1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
from __future__ import division, print_function, absolute_import
import warnings
import pickle
import numpy as np
import numpy.testing as npt
from numpy.testing import assert_allclose, assert_equal
import numpy.ma.testutils as ma_npt
from scipy._lib._util import getargspec_no_self as _getargspec
from scipy import stats
def check_named_results(res, attributes, ma=False):
for i, attr in enumerate(attributes):
if ma:
ma_npt.assert_equal(res[i], getattr(res, attr))
else:
npt.assert_equal(res[i], getattr(res, attr))
def check_normalization(distfn, args, distname):
norm_moment = distfn.moment(0, *args)
npt.assert_allclose(norm_moment, 1.0)
# this is a temporary plug: either ncf or expect is problematic;
# best be marked as a knownfail, but I've no clue how to do it.
if distname == "ncf":
atol, rtol = 1e-5, 0
else:
atol, rtol = 1e-7, 1e-7
normalization_expect = distfn.expect(lambda x: 1, args=args)
npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
err_msg=distname, verbose=True)
normalization_cdf = distfn.cdf(distfn.b, *args)
npt.assert_allclose(normalization_cdf, 1.0)
def check_moment(distfn, arg, m, v, msg):
m1 = distfn.moment(1, *arg)
m2 = distfn.moment(2, *arg)
if not np.isinf(m):
npt.assert_almost_equal(m1, m, decimal=10, err_msg=msg +
' - 1st moment')
else: # or np.isnan(m1),
npt.assert_(np.isinf(m1),
msg + ' - 1st moment -infinite, m1=%s' % str(m1))
if not np.isinf(v):
npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10, err_msg=msg +
' - 2ndt moment')
else: # or np.isnan(m2),
npt.assert_(np.isinf(m2),
msg + ' - 2nd moment -infinite, m2=%s' % str(m2))
def check_mean_expect(distfn, arg, m, msg):
if np.isfinite(m):
m1 = distfn.expect(lambda x: x, arg)
npt.assert_almost_equal(m1, m, decimal=5, err_msg=msg +
' - 1st moment (expect)')
def check_var_expect(distfn, arg, m, v, msg):
if np.isfinite(v):
m2 = distfn.expect(lambda x: x*x, arg)
npt.assert_almost_equal(m2, v + m*m, decimal=5, err_msg=msg +
' - 2st moment (expect)')
def check_skew_expect(distfn, arg, m, v, s, msg):
if np.isfinite(s):
m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
decimal=5, err_msg=msg + ' - skew')
else:
npt.assert_(np.isnan(s))
def check_kurt_expect(distfn, arg, m, v, k, msg):
if np.isfinite(k):
m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2), atol=1e-5, rtol=1e-5,
err_msg=msg + ' - kurtosis')
else:
npt.assert_(np.isnan(k))
def check_entropy(distfn, arg, msg):
ent = distfn.entropy(*arg)
npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
def check_private_entropy(distfn, args, superclass):
# compare a generic _entropy with the distribution-specific implementation
npt.assert_allclose(distfn._entropy(*args),
superclass._entropy(distfn, *args))
def check_edge_support(distfn, args):
# Make sure that x=self.a and self.b are handled correctly.
x = [distfn.a, distfn.b]
if isinstance(distfn, stats.rv_discrete):
x = [distfn.a - 1, distfn.b]
npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
if distfn.name not in ('skellam', 'dlaplace'):
# with a = -inf, log(0) generates warnings
npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
# out-of-bounds for isf & ppf
npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
def check_named_args(distfn, x, shape_args, defaults, meths):
## Check calling w/ named arguments.
# check consistency of shapes, numargs and _parse signature
signature = _getargspec(distfn._parse_args)
npt.assert_(signature.varargs is None)
npt.assert_(signature.keywords is None)
npt.assert_(list(signature.defaults) == list(defaults))
shape_argnames = signature.args[:-len(defaults)] # a, b, loc=0, scale=1
if distfn.shapes:
shapes_ = distfn.shapes.replace(',', ' ').split()
else:
shapes_ = ''
npt.assert_(len(shapes_) == distfn.numargs)
npt.assert_(len(shapes_) == len(shape_argnames))
# check calling w/ named arguments
shape_args = list(shape_args)
vals = [meth(x, *shape_args) for meth in meths]
npt.assert_(np.all(np.isfinite(vals)))
names, a, k = shape_argnames[:], shape_args[:], {}
while names:
k.update({names.pop(): a.pop()})
v = [meth(x, *a, **k) for meth in meths]
npt.assert_array_equal(vals, v)
if 'n' not in k.keys():
# `n` is first parameter of moment(), so can't be used as named arg
with warnings.catch_warnings():
warnings.simplefilter("ignore", UserWarning)
npt.assert_equal(distfn.moment(1, *a, **k),
distfn.moment(1, *shape_args))
# unknown arguments should not go through:
k.update({'kaboom': 42})
npt.assert_raises(TypeError, distfn.cdf, x, **k)
def check_random_state_property(distfn, args):
# check the random_state attribute of a distribution *instance*
# This test fiddles with distfn.random_state. This breaks other tests,
# hence need to save it and then restore.
rndm = distfn.random_state
# baseline: this relies on the global state
np.random.seed(1234)
distfn.random_state = None
r0 = distfn.rvs(*args, size=8)
# use an explicit instance-level random_state
distfn.random_state = 1234
r1 = distfn.rvs(*args, size=8)
npt.assert_equal(r0, r1)
distfn.random_state = np.random.RandomState(1234)
r2 = distfn.rvs(*args, size=8)
npt.assert_equal(r0, r2)
# can override the instance-level random_state for an individual .rvs call
distfn.random_state = 2
orig_state = distfn.random_state.get_state()
r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
npt.assert_equal(r0, r3)
# ... and that does not alter the instance-level random_state!
npt.assert_equal(distfn.random_state.get_state(), orig_state)
# finally, restore the random_state
distfn.random_state = rndm
def check_meth_dtype(distfn, arg, meths):
q0 = [0.25, 0.5, 0.75]
x0 = distfn.ppf(q0, *arg)
x_cast = [x0.astype(tp) for tp in
(np.int_, np.float16, np.float32, np.float64)]
for x in x_cast:
# casting may have clipped the values, exclude those
distfn._argcheck(*arg)
x = x[(distfn.a < x) & (x < distfn.b)]
for meth in meths:
val = meth(x, *arg)
npt.assert_(val.dtype == np.float_)
def check_ppf_dtype(distfn, arg):
q0 = np.asarray([0.25, 0.5, 0.75])
q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
for q in q_cast:
for meth in [distfn.ppf, distfn.isf]:
val = meth(q, *arg)
npt.assert_(val.dtype == np.float_)
def check_cmplx_deriv(distfn, arg):
# Distributions allow complex arguments.
def deriv(f, x, *arg):
x = np.asarray(x)
h = 1e-10
return (f(x + h*1j, *arg)/h).imag
x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
x_cast = [x0.astype(tp) for tp in
(np.int_, np.float16, np.float32, np.float64)]
for x in x_cast:
# casting may have clipped the values, exclude those
distfn._argcheck(*arg)
x = x[(distfn.a < x) & (x < distfn.b)]
pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
assert_allclose(deriv(distfn.logpdf, x, *arg),
deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
rtol=1e-5)
def check_pickling(distfn, args):
# check that a distribution instance pickles and unpickles
# pay special attention to the random_state property
# save the random_state (restore later)
rndm = distfn.random_state
distfn.random_state = 1234
distfn.rvs(*args, size=8)
s = pickle.dumps(distfn)
r0 = distfn.rvs(*args, size=8)
unpickled = pickle.loads(s)
r1 = unpickled.rvs(*args, size=8)
npt.assert_equal(r0, r1)
# also smoke test some methods
medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
npt.assert_equal(medians[0], medians[1])
npt.assert_equal(distfn.cdf(medians[0], *args),
unpickled.cdf(medians[1], *args))
# restore the random_state
distfn.random_state = rndm
def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
np.random.seed(123)
sample = distfunc.rvs(*allargs)
assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
if not shape_only:
rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
np.random.seed(123)
expected = rvs(*allargs)
assert_allclose(sample, expected, rtol=1e-15)
|