1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
from __future__ import division, print_function, absolute_import
import numpy.testing as npt
import numpy as np
from scipy._lib.six import xrange
from scipy import stats
from common_tests import (check_normalization, check_moment, check_mean_expect,
check_var_expect, check_skew_expect,
check_kurt_expect, check_entropy,
check_private_entropy, check_edge_support,
check_named_args, check_random_state_property,
check_pickling, check_rvs_broadcast)
from scipy.stats._distr_params import distdiscrete
knf = npt.dec.knownfailureif
vals = ([1, 2, 3, 4], [0.1, 0.2, 0.3, 0.4])
distdiscrete += [[stats.rv_discrete(values=vals), ()]]
def test_discrete_basic():
for distname, arg in distdiscrete:
try:
distfn = getattr(stats, distname)
except TypeError:
distfn = distname
distname = 'sample distribution'
np.random.seed(9765456)
rvs = distfn.rvs(size=2000, *arg)
supp = np.unique(rvs)
m, v = distfn.stats(*arg)
yield check_cdf_ppf, distfn, arg, supp, distname + ' cdf_ppf'
yield check_pmf_cdf, distfn, arg, distname
yield check_oth, distfn, arg, supp, distname + ' oth'
yield check_edge_support, distfn, arg
alpha = 0.01
yield (check_discrete_chisquare, distfn, arg, rvs, alpha,
distname + ' chisquare')
seen = set()
for distname, arg in distdiscrete:
if distname in seen:
continue
seen.add(distname)
try:
distfn = getattr(stats, distname)
except TypeError:
distfn = distname
distname = 'sample distribution'
locscale_defaults = (0,)
meths = [distfn.pmf, distfn.logpmf, distfn.cdf, distfn.logcdf,
distfn.logsf]
# make sure arguments are within support
spec_k = {'randint': 11, 'hypergeom': 4, 'bernoulli': 0, }
k = spec_k.get(distname, 1)
yield check_named_args, distfn, k, arg, locscale_defaults, meths
if distname != 'sample distribution':
yield check_scale_docstring, distfn
yield check_random_state_property, distfn, arg
yield check_pickling, distfn, arg
# Entropy
yield check_entropy, distfn, arg, distname
if distfn.__class__._entropy != stats.rv_discrete._entropy:
yield check_private_entropy, distfn, arg, stats.rv_discrete
def test_moments():
for distname, arg in distdiscrete:
try:
distfn = getattr(stats, distname)
except TypeError:
distfn = distname
distname = 'sample distribution'
m, v, s, k = distfn.stats(*arg, moments='mvsk')
yield check_normalization, distfn, arg, distname
# compare `stats` and `moment` methods
yield check_moment, distfn, arg, m, v, distname
yield check_mean_expect, distfn, arg, m, distname
yield check_var_expect, distfn, arg, m, v, distname
yield check_skew_expect, distfn, arg, m, v, s, distname
cond = distname in ['zipf']
msg = distname + ' fails kurtosis'
yield knf(cond, msg)(check_kurt_expect), distfn, arg, m, v, k, distname
# frozen distr moments
yield check_moment_frozen, distfn, arg, m, 1
yield check_moment_frozen, distfn, arg, v+m*m, 2
def test_rvs_broadcast():
for dist, shape_args in distdiscrete:
# If shape_only is True, it means the _rvs method of the
# distribution uses more than one random number to generate a random
# variate. That means the result of using rvs with broadcasting or
# with a nontrivial size will not necessarily be the same as using the
# numpy.vectorize'd version of rvs(), so we can only compare the shapes
# of the results, not the values.
# Whether or not a distribution is in the following list is an
# implementation detail of the distribution, not a requirement. If
# the implementation the rvs() method of a distribution changes, this
# test might also have to be changed.
shape_only = dist in ['skellam']
try:
distfunc = getattr(stats, dist)
except TypeError:
distfunc = dist
dist = 'rv_discrete(values=(%r, %r))' % (dist.xk, dist.pk)
loc = np.zeros(2)
nargs = distfunc.numargs
allargs = []
bshape = []
# Generate shape parameter arguments...
for k in range(nargs):
shp = (k + 3,) + (1,)*(k + 1)
param_val = shape_args[k]
allargs.append(param_val*np.ones(shp, dtype=np.array(param_val).dtype))
bshape.insert(0, shp[0])
allargs.append(loc)
bshape.append(loc.size)
# bshape holds the expected shape when loc, scale, and the shape
# parameters are all broadcast together.
yield check_rvs_broadcast, distfunc, dist, allargs, bshape, shape_only, [np.int_]
def check_cdf_ppf(distfn, arg, supp, msg):
# cdf is a step function, and ppf(q) = min{k : cdf(k) >= q, k integer}
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg), *arg),
supp, msg + '-roundtrip')
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp, *arg) - 1e-8, *arg),
supp, msg + '-roundtrip')
if not hasattr(distfn, 'xk'):
supp1 = supp[supp < distfn.b]
npt.assert_array_equal(distfn.ppf(distfn.cdf(supp1, *arg) + 1e-8, *arg),
supp1 + distfn.inc, msg + ' ppf-cdf-next')
# -1e-8 could cause an error if pmf < 1e-8
def check_pmf_cdf(distfn, arg, distname):
if hasattr(distfn, 'xk'):
index = distfn.xk
else:
startind = int(distfn.ppf(0.01, *arg) - 1)
index = list(range(startind, startind + 10))
cdfs = distfn.cdf(index, *arg)
pmfs_cum = distfn.pmf(index, *arg).cumsum()
atol, rtol = 1e-10, 1e-10
if distname == 'skellam': # ncx2 accuracy
atol, rtol = 1e-5, 1e-5
npt.assert_allclose(cdfs - cdfs[0], pmfs_cum - pmfs_cum[0],
atol=atol, rtol=rtol)
def check_moment_frozen(distfn, arg, m, k):
npt.assert_allclose(distfn(*arg).moment(k), m,
atol=1e-10, rtol=1e-10)
def check_oth(distfn, arg, supp, msg):
# checking other methods of distfn
npt.assert_allclose(distfn.sf(supp, *arg), 1. - distfn.cdf(supp, *arg),
atol=1e-10, rtol=1e-10)
q = np.linspace(0.01, 0.99, 20)
npt.assert_allclose(distfn.isf(q, *arg), distfn.ppf(1. - q, *arg),
atol=1e-10, rtol=1e-10)
median_sf = distfn.isf(0.5, *arg)
npt.assert_(distfn.sf(median_sf - 1, *arg) > 0.5)
npt.assert_(distfn.cdf(median_sf + 1, *arg) > 0.5)
def check_discrete_chisquare(distfn, arg, rvs, alpha, msg):
"""Perform chisquare test for random sample of a discrete distribution
Parameters
----------
distname : string
name of distribution function
arg : sequence
parameters of distribution
alpha : float
significance level, threshold for p-value
Returns
-------
result : bool
0 if test passes, 1 if test fails
"""
wsupp = 0.05
# construct intervals with minimum mass `wsupp`.
# intervals are left-half-open as in a cdf difference
lo = int(max(distfn.a, -1000))
distsupport = xrange(lo, int(min(distfn.b, 1000)) + 1)
last = 0
distsupp = [lo]
distmass = []
for ii in distsupport:
current = distfn.cdf(ii, *arg)
if current - last >= wsupp - 1e-14:
distsupp.append(ii)
distmass.append(current - last)
last = current
if current > (1 - wsupp):
break
if distsupp[-1] < distfn.b:
distsupp.append(distfn.b)
distmass.append(1 - last)
distsupp = np.array(distsupp)
distmass = np.array(distmass)
# convert intervals to right-half-open as required by histogram
histsupp = distsupp + 1e-8
histsupp[0] = distfn.a
# find sample frequencies and perform chisquare test
freq, hsupp = np.histogram(rvs, histsupp)
chis, pval = stats.chisquare(np.array(freq), len(rvs)*distmass)
npt.assert_(pval > alpha,
'chisquare - test for %s at arg = %s with pval = %s' %
(msg, str(arg), str(pval)))
def check_scale_docstring(distfn):
if distfn.__doc__ is not None:
# Docstrings can be stripped if interpreter is run with -OO
npt.assert_('scale' not in distfn.__doc__)
if __name__ == "__main__":
npt.run_module_suite()
|