1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
|
# Author: Travis Oliphant, 2002
#
# Further enhancements and tests added by numerous SciPy developers.
#
from __future__ import division, print_function, absolute_import
import warnings
import numpy as np
from numpy.random import RandomState
from numpy.testing import (TestCase, run_module_suite, assert_array_equal,
assert_almost_equal, assert_array_less, assert_array_almost_equal,
assert_raises, assert_, assert_allclose, assert_equal, dec, assert_warns)
from scipy import stats
from common_tests import check_named_results
# Matplotlib is not a scipy dependency but is optionally used in probplot, so
# check if it's available
try:
import matplotlib.pyplot as plt
have_matplotlib = True
except:
have_matplotlib = False
g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
g10 = [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]
class TestBayes_mvs(TestCase):
def test_basic(self):
# Expected values in this test simply taken from the function. For
# some checks regarding correctness of implementation, see review in
# gh-674
data = [6, 9, 12, 7, 8, 8, 13]
mean, var, std = stats.bayes_mvs(data)
assert_almost_equal(mean.statistic, 9.0)
assert_allclose(mean.minmax, (7.1036502226125329, 10.896349777387467),
rtol=1e-14)
assert_almost_equal(var.statistic, 10.0)
assert_allclose(var.minmax, (3.1767242068607087, 24.45910381334018),
rtol=1e-09)
assert_almost_equal(std.statistic, 2.9724954732045084, decimal=14)
assert_allclose(std.minmax, (1.7823367265645145, 4.9456146050146312),
rtol=1e-14)
def test_empty_input(self):
assert_raises(ValueError, stats.bayes_mvs, [])
def test_result_attributes(self):
x = np.arange(15)
attributes = ('statistic', 'minmax')
res = stats.bayes_mvs(x)
for i in res:
check_named_results(i, attributes)
class TestMvsdist(TestCase):
def test_basic(self):
data = [6, 9, 12, 7, 8, 8, 13]
mean, var, std = stats.mvsdist(data)
assert_almost_equal(mean.mean(), 9.0)
assert_allclose(mean.interval(0.9), (7.1036502226125329,
10.896349777387467), rtol=1e-14)
assert_almost_equal(var.mean(), 10.0)
assert_allclose(var.interval(0.9), (3.1767242068607087,
24.45910381334018), rtol=1e-09)
assert_almost_equal(std.mean(), 2.9724954732045084, decimal=14)
assert_allclose(std.interval(0.9), (1.7823367265645145,
4.9456146050146312), rtol=1e-14)
def test_empty_input(self):
assert_raises(ValueError, stats.mvsdist, [])
def test_bad_arg(self):
# Raise ValueError if fewer than two data points are given.
data = [1]
assert_raises(ValueError, stats.mvsdist, data)
def test_warns(self):
# regression test for gh-5270
# make sure there are no spurious divide-by-zero warnings
with warnings.catch_warnings():
warnings.simplefilter('error', RuntimeWarning)
[x.mean() for x in stats.mvsdist([1, 2, 3])]
[x.mean() for x in stats.mvsdist([1, 2, 3, 4, 5])]
class TestShapiro(TestCase):
def test_basic(self):
x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
4.43,0.21,4.75,0.71,1.52,3.24,
0.93,0.42,4.97,9.53,4.55,0.47,6.66]
w,pw = stats.shapiro(x1)
assert_almost_equal(w,0.90047299861907959,6)
assert_almost_equal(pw,0.042089745402336121,6)
x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
0.08,3.67,2.81,3.49]
w,pw = stats.shapiro(x2)
assert_almost_equal(w,0.9590270,6)
assert_almost_equal(pw,0.52460,3)
# Verified against R
np.random.seed(12345678)
x3 = stats.norm.rvs(loc=5, scale=3, size=100)
w, pw = stats.shapiro(x3)
assert_almost_equal(w, 0.9772805571556091, decimal=6)
assert_almost_equal(pw, 0.08144091814756393, decimal=3)
# Extracted from original paper
x4 = [0.139, 0.157, 0.175, 0.256, 0.344, 0.413, 0.503, 0.577, 0.614,
0.655, 0.954, 1.392, 1.557, 1.648, 1.690, 1.994, 2.174, 2.206,
3.245, 3.510, 3.571, 4.354, 4.980, 6.084, 8.351]
W_expected = 0.83467
p_expected = 0.000914
w, pw = stats.shapiro(x4)
assert_almost_equal(w, W_expected, decimal=4)
assert_almost_equal(pw, p_expected, decimal=5)
def test_2d(self):
x1 = [[0.11, 7.87, 4.61, 10.14, 7.95, 3.14, 0.46,
4.43, 0.21, 4.75], [0.71, 1.52, 3.24,
0.93, 0.42, 4.97, 9.53, 4.55, 0.47, 6.66]]
w, pw = stats.shapiro(x1)
assert_almost_equal(w, 0.90047299861907959, 6)
assert_almost_equal(pw, 0.042089745402336121, 6)
x2 = [[1.36, 1.14, 2.92, 2.55, 1.46, 1.06, 5.27, -1.11,
3.48, 1.10], [0.88, -0.51, 1.46, 0.52, 6.20, 1.69,
0.08, 3.67, 2.81, 3.49]]
w, pw = stats.shapiro(x2)
assert_almost_equal(w, 0.9590270, 6)
assert_almost_equal(pw, 0.52460, 3)
def test_empty_input(self):
assert_raises(ValueError, stats.shapiro, [])
assert_raises(ValueError, stats.shapiro, [[], [], []])
def test_not_enough_values(self):
assert_raises(ValueError, stats.shapiro, [1, 2])
assert_raises(ValueError, stats.shapiro, [[], [2]])
def test_bad_arg(self):
# Length of x is less than 3.
x = [1]
assert_raises(ValueError, stats.shapiro, x)
def test_nan_input(self):
x = np.arange(10.)
x[9] = np.nan
w, pw = stats.shapiro(x)
assert_equal(w, np.nan)
assert_almost_equal(pw, 1.0)
class TestAnderson(TestCase):
def test_normal(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1)
assert_array_less(crit[:-1], A)
A,crit,sig = stats.anderson(x2)
assert_array_less(A, crit[-2:])
def test_expon(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1,'expon')
assert_array_less(A, crit[-2:])
olderr = np.seterr(all='ignore')
try:
A,crit,sig = stats.anderson(x2,'expon')
finally:
np.seterr(**olderr)
assert_(A > crit[-1])
def test_bad_arg(self):
assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')
def test_result_attributes(self):
rs = RandomState(1234567890)
x = rs.standard_exponential(size=50)
res = stats.anderson(x)
attributes = ('statistic', 'critical_values', 'significance_level')
check_named_results(res, attributes)
class TestAndersonKSamp(TestCase):
def test_example1a(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass a mixture of lists and arrays
t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
assert_warns(UserWarning, stats.anderson_ksamp, (t1, t2, t3, t4),
midrank=False)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)
assert_almost_equal(Tk, 4.449, 3)
assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
tm, 4)
assert_almost_equal(p, 0.0021, 4)
def test_example1b(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass arrays
t1 = np.array([38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0])
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4), midrank=True)
assert_almost_equal(Tk, 4.480, 3)
assert_array_almost_equal([0.4985, 1.3237, 1.9158, 2.4930, 3.2459],
tm, 4)
assert_almost_equal(p, 0.0020, 4)
def test_example2a(self):
# Example data taken from an earlier technical report of
# Scholz and Stephens
# Pass lists instead of arrays
t1 = [194, 15, 41, 29, 33, 181]
t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
118, 25, 156, 310, 76, 26, 44, 23, 62]
t5 = [130, 208, 70, 101, 208]
t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
22, 139, 210, 97, 30, 23, 13, 14]
t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
t12 = [50, 254, 5, 283, 35, 12]
t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
61, 34]
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10, t11, t12, t13, t14),
midrank=False)
assert_almost_equal(Tk, 3.288, 3)
assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
tm, 4)
assert_almost_equal(p, 0.0041, 4)
def test_example2b(self):
# Example data taken from an earlier technical report of
# Scholz and Stephens
t1 = [194, 15, 41, 29, 33, 181]
t2 = [413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118]
t3 = [34, 31, 18, 18, 67, 57, 62, 7, 22, 34]
t4 = [90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29,
118, 25, 156, 310, 76, 26, 44, 23, 62]
t5 = [130, 208, 70, 101, 208]
t6 = [74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27]
t7 = [55, 320, 56, 104, 220, 239, 47, 246, 176, 182, 33]
t8 = [23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5,
12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95]
t9 = [97, 51, 11, 4, 141, 18, 142, 68, 77, 80, 1, 16, 106, 206, 82,
54, 31, 216, 46, 111, 39, 63, 18, 191, 18, 163, 24]
t10 = [50, 44, 102, 72, 22, 39, 3, 15, 197, 188, 79, 88, 46, 5, 5, 36,
22, 139, 210, 97, 30, 23, 13, 14]
t11 = [359, 9, 12, 270, 603, 3, 104, 2, 438]
t12 = [50, 254, 5, 283, 35, 12]
t13 = [487, 18, 100, 7, 98, 5, 85, 91, 43, 230, 3, 130]
t14 = [102, 209, 14, 57, 54, 32, 67, 59, 134, 152, 27, 14, 230, 66,
61, 34]
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='approximate p-value')
Tk, tm, p = stats.anderson_ksamp((t1, t2, t3, t4, t5, t6, t7, t8,
t9, t10, t11, t12, t13, t14),
midrank=True)
assert_almost_equal(Tk, 3.294, 3)
assert_array_almost_equal([0.5990, 1.3269, 1.8052, 2.2486, 2.8009],
tm, 4)
assert_almost_equal(p, 0.0041, 4)
def test_not_enough_samples(self):
assert_raises(ValueError, stats.anderson_ksamp, np.ones(5))
def test_no_distinct_observations(self):
assert_raises(ValueError, stats.anderson_ksamp,
(np.ones(5), np.ones(5)))
def test_empty_sample(self):
assert_raises(ValueError, stats.anderson_ksamp, (np.ones(5), []))
def test_result_attributes(self):
# Example data from Scholz & Stephens (1987), originally
# published in Lehmann (1995, Nonparametrics, Statistical
# Methods Based on Ranks, p. 309)
# Pass a mixture of lists and arrays
t1 = [38.7, 41.5, 43.8, 44.5, 45.5, 46.0, 47.7, 58.0]
t2 = np.array([39.2, 39.3, 39.7, 41.4, 41.8, 42.9, 43.3, 45.8])
t3 = np.array([34.0, 35.0, 39.0, 40.0, 43.0, 43.0, 44.0, 45.0])
t4 = np.array([34.0, 34.8, 34.8, 35.4, 37.2, 37.8, 41.2, 42.8])
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='approximate p-value')
res = stats.anderson_ksamp((t1, t2, t3, t4), midrank=False)
attributes = ('statistic', 'critical_values', 'significance_level')
check_named_results(res, attributes)
class TestAnsari(TestCase):
def test_small(self):
x = [1,2,3,3,4]
y = [3,2,6,1,6,1,4,1]
with warnings.catch_warnings(record=True): # Ties preclude use ...
W, pval = stats.ansari(x,y)
assert_almost_equal(W,23.5,11)
assert_almost_equal(pval,0.13499256881897437,11)
def test_approx(self):
ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))
with warnings.catch_warnings():
warnings.filterwarnings('ignore',
message="Ties preclude use of exact statistic.")
W, pval = stats.ansari(ramsay, parekh)
assert_almost_equal(W,185.5,11)
assert_almost_equal(pval,0.18145819972867083,11)
def test_exact(self):
W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
assert_almost_equal(W,10.0,11)
assert_almost_equal(pval,0.533333333333333333,7)
def test_bad_arg(self):
assert_raises(ValueError, stats.ansari, [], [1])
assert_raises(ValueError, stats.ansari, [1], [])
def test_result_attributes(self):
x = [1, 2, 3, 3, 4]
y = [3, 2, 6, 1, 6, 1, 4, 1]
with warnings.catch_warnings(record=True): # Ties preclude use ...
res = stats.ansari(x, y)
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes)
class TestBartlett(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
T, pval = stats.bartlett(*args)
assert_almost_equal(T,20.78587342806484,7)
assert_almost_equal(pval,0.0136358632781,7)
def test_bad_arg(self):
# Too few args raises ValueError.
assert_raises(ValueError, stats.bartlett, [1])
def test_result_attributes(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
res = stats.bartlett(*args)
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes)
def test_empty_arg(self):
args = (g1, g2, g3, g4, g5, g6, g7, g8, g9, g10, [])
assert_equal((np.nan, np.nan), stats.bartlett(*args))
class TestLevene(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
W, pval = stats.levene(*args)
assert_almost_equal(W,1.7059176930008939,7)
assert_almost_equal(pval,0.0990829755522,7)
def test_trimmed1(self):
# Test that center='trimmed' gives the same result as center='mean'
# when proportiontocut=0.
W1, pval1 = stats.levene(g1, g2, g3, center='mean')
W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
np.random.seed(1234)
x2 = np.random.permutation(x)
# Use center='trimmed'
W0, pval0 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
W1, pval1 = stats.levene(x2, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(W0, W2)
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_equal_mean_median(self):
x = np.linspace(-1,1,21)
np.random.seed(1234)
x2 = np.random.permutation(x)
y = x**3
W1, pval1 = stats.levene(x, y, center='mean')
W2, pval2 = stats.levene(x2, y, center='median')
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.levene, x, x, center='trim')
def test_too_few_args(self):
assert_raises(ValueError, stats.levene, [1])
def test_result_attributes(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
res = stats.levene(*args)
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes)
class TestBinomP(TestCase):
def test_data(self):
pval = stats.binom_test(100,250)
assert_almost_equal(pval,0.0018833009350757682,11)
pval = stats.binom_test(201,405)
assert_almost_equal(pval,0.92085205962670713,11)
pval = stats.binom_test([682,243],p=3.0/4)
assert_almost_equal(pval,0.38249155957481695,11)
def test_bad_len_x(self):
# Length of x must be 1 or 2.
assert_raises(ValueError, stats.binom_test, [1,2,3])
def test_bad_n(self):
# len(x) is 1, but n is invalid.
# Missing n
assert_raises(ValueError, stats.binom_test, [100])
# n less than x[0]
assert_raises(ValueError, stats.binom_test, [100], n=50)
def test_bad_p(self):
assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)
def test_alternatives(self):
res = stats.binom_test(51, 235, p=1./6, alternative='less')
assert_almost_equal(res, 0.982022657605858)
res = stats.binom_test(51, 235, p=1./6, alternative='greater')
assert_almost_equal(res, 0.02654424571169085)
res = stats.binom_test(51, 235, p=1./6, alternative='two-sided')
assert_almost_equal(res, 0.0437479701823997)
class TestFligner(TestCase):
def test_data(self):
# numbers from R: fligner.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.fligner(x1,x1**2),
(3.2282229927203536, 0.072379187848207877), 11)
def test_trimmed1(self):
# Test that center='trimmed' gives the same result as center='mean'
# when proportiontocut=0.
Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
# Use center='trimmed'
Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
# The following test looks reasonable at first, but fligner() uses the
# function stats.rankdata(), and in one of the cases in this test,
# there are ties, while in the other (because of normal rounding
# errors) there are not. This difference leads to differences in the
# third significant digit of W.
#
#def test_equal_mean_median(self):
# x = np.linspace(-1,1,21)
# y = x**3
# W1, pval1 = stats.fligner(x, y, center='mean')
# W2, pval2 = stats.fligner(x, y, center='median')
# assert_almost_equal(W1, W2)
# assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.fligner, x, x, center='trim')
def test_bad_num_args(self):
# Too few args raises ValueError.
assert_raises(ValueError, stats.fligner, [1])
def test_empty_arg(self):
x = np.arange(5)
assert_equal((np.nan, np.nan), stats.fligner(x, x**2, []))
class TestMood(TestCase):
def test_mood(self):
# numbers from R: mood.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.mood(x1, x1**2),
(-1.3830857299399906, 0.16663858066771478), 11)
def test_mood_order_of_args(self):
# z should change sign when the order of arguments changes, pvalue
# should not change
np.random.seed(1234)
x1 = np.random.randn(10, 1)
x2 = np.random.randn(15, 1)
z1, p1 = stats.mood(x1, x2)
z2, p2 = stats.mood(x2, x1)
assert_array_almost_equal([z1, p1], [-z2, p2])
def test_mood_with_axis_none(self):
#Test with axis = None, compare with results from R
x1 = [-0.626453810742332, 0.183643324222082, -0.835628612410047,
1.59528080213779, 0.329507771815361, -0.820468384118015,
0.487429052428485, 0.738324705129217, 0.575781351653492,
-0.305388387156356, 1.51178116845085, 0.389843236411431,
-0.621240580541804, -2.2146998871775, 1.12493091814311,
-0.0449336090152309, -0.0161902630989461, 0.943836210685299,
0.821221195098089, 0.593901321217509]
x2 = [-0.896914546624981, 0.184849184646742, 1.58784533120882,
-1.13037567424629, -0.0802517565509893, 0.132420284381094,
0.707954729271733, -0.23969802417184, 1.98447393665293,
-0.138787012119665, 0.417650750792556, 0.981752777463662,
-0.392695355503813, -1.03966897694891, 1.78222896030858,
-2.31106908460517, 0.878604580921265, 0.035806718015226,
1.01282869212708, 0.432265154539617, 2.09081920524915,
-1.19992581964387, 1.58963820029007, 1.95465164222325,
0.00493777682814261, -2.45170638784613, 0.477237302613617,
-0.596558168631403, 0.792203270299649, 0.289636710177348]
x1 = np.array(x1)
x2 = np.array(x2)
x1.shape = (10, 2)
x2.shape = (15, 2)
assert_array_almost_equal(stats.mood(x1, x2, axis=None),
[-1.31716607555, 0.18778296257])
def test_mood_2d(self):
# Test if the results of mood test in 2-D case are consistent with the
# R result for the same inputs. Numbers from R mood.test().
ny = 5
np.random.seed(1234)
x1 = np.random.randn(10, ny)
x2 = np.random.randn(15, ny)
z_vectest, pval_vectest = stats.mood(x1, x2)
for j in range(ny):
assert_array_almost_equal([z_vectest[j], pval_vectest[j]],
stats.mood(x1[:, j], x2[:, j]))
# inverse order of dimensions
x1 = x1.transpose()
x2 = x2.transpose()
z_vectest, pval_vectest = stats.mood(x1, x2, axis=1)
for i in range(ny):
# check axis handling is self consistent
assert_array_almost_equal([z_vectest[i], pval_vectest[i]],
stats.mood(x1[i, :], x2[i, :]))
def test_mood_3d(self):
shape = (10, 5, 6)
np.random.seed(1234)
x1 = np.random.randn(*shape)
x2 = np.random.randn(*shape)
for axis in range(3):
z_vectest, pval_vectest = stats.mood(x1, x2, axis=axis)
# Tests that result for 3-D arrays is equal to that for the
# same calculation on a set of 1-D arrays taken from the
# 3-D array
axes_idx = ([1, 2], [0, 2], [0, 1]) # the two axes != axis
for i in range(shape[axes_idx[axis][0]]):
for j in range(shape[axes_idx[axis][1]]):
if axis == 0:
slice1 = x1[:, i, j]
slice2 = x2[:, i, j]
elif axis == 1:
slice1 = x1[i, :, j]
slice2 = x2[i, :, j]
else:
slice1 = x1[i, j, :]
slice2 = x2[i, j, :]
assert_array_almost_equal([z_vectest[i, j],
pval_vectest[i, j]],
stats.mood(slice1, slice2))
def test_mood_bad_arg(self):
# Raise ValueError when the sum of the lengths of the args is less than 3
assert_raises(ValueError, stats.mood, [1], [])
class TestProbplot(TestCase):
def test_basic(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm, osr = stats.probplot(x, fit=False)
osm_expected = [-1.8241636, -1.38768012, -1.11829229, -0.91222575,
-0.73908135, -0.5857176, -0.44506467, -0.31273668,
-0.18568928, -0.06158146, 0.06158146, 0.18568928,
0.31273668, 0.44506467, 0.5857176, 0.73908135,
0.91222575, 1.11829229, 1.38768012, 1.8241636]
assert_allclose(osr, np.sort(x))
assert_allclose(osm, osm_expected)
res, res_fit = stats.probplot(x, fit=True)
res_fit_expected = [1.05361841, 0.31297795, 0.98741609]
assert_allclose(res_fit, res_fit_expected)
def test_sparams_keyword(self):
np.random.seed(123456)
x = stats.norm.rvs(size=100)
# Check that None, () and 0 (loc=0, for normal distribution) all work
# and give the same results
osm1, osr1 = stats.probplot(x, sparams=None, fit=False)
osm2, osr2 = stats.probplot(x, sparams=0, fit=False)
osm3, osr3 = stats.probplot(x, sparams=(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osm1, osm3)
assert_allclose(osr1, osr2)
assert_allclose(osr1, osr3)
# Check giving (loc, scale) params for normal distribution
osm, osr = stats.probplot(x, sparams=(), fit=False)
def test_dist_keyword(self):
np.random.seed(12345)
x = stats.norm.rvs(size=20)
osm1, osr1 = stats.probplot(x, fit=False, dist='t', sparams=(3,))
osm2, osr2 = stats.probplot(x, fit=False, dist=stats.t, sparams=(3,))
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
assert_raises(ValueError, stats.probplot, x, dist='wrong-dist-name')
assert_raises(AttributeError, stats.probplot, x, dist=[])
class custom_dist(object):
"""Some class that looks just enough like a distribution."""
def ppf(self, q):
return stats.norm.ppf(q, loc=2)
osm1, osr1 = stats.probplot(x, sparams=(2,), fit=False)
osm2, osr2 = stats.probplot(x, dist=custom_dist(), fit=False)
assert_allclose(osm1, osm2)
assert_allclose(osr1, osr2)
@dec.skipif(not have_matplotlib)
def test_plot_kwarg(self):
np.random.seed(7654321)
fig = plt.figure()
fig.add_subplot(111)
x = stats.t.rvs(3, size=100)
res1, fitres1 = stats.probplot(x, plot=plt)
plt.close()
res2, fitres2 = stats.probplot(x, plot=None)
res3 = stats.probplot(x, fit=False, plot=plt)
plt.close()
res4 = stats.probplot(x, fit=False, plot=None)
# Check that results are consistent between combinations of `fit` and
# `plot` keywords.
assert_(len(res1) == len(res2) == len(res3) == len(res4) == 2)
assert_allclose(res1, res2)
assert_allclose(res1, res3)
assert_allclose(res1, res4)
assert_allclose(fitres1, fitres2)
# Check that a Matplotlib Axes object is accepted
fig = plt.figure()
ax = fig.add_subplot(111)
stats.probplot(x, fit=False, plot=ax)
plt.close()
def test_probplot_bad_args(self):
# Raise ValueError when given an invalid distribution.
assert_raises(ValueError, stats.probplot, [1], dist="plate_of_shrimp")
def test_empty(self):
assert_equal(stats.probplot([], fit=False),
(np.array([]), np.array([])))
assert_equal(stats.probplot([], fit=True),
((np.array([]), np.array([])),
(np.nan, np.nan, 0.0)))
def test_array_of_size_one(self):
with np.errstate(invalid='ignore'):
assert_equal(stats.probplot([1], fit=True),
((np.array([0.]), np.array([1])),
(np.nan, np.nan, 0.0)))
def test_wilcoxon_bad_arg():
# Raise ValueError when two args of different lengths are given or
# zero_method is unknown.
assert_raises(ValueError, stats.wilcoxon, [1], [1,2])
assert_raises(ValueError, stats.wilcoxon, [1,2], [1,2], "dummy")
def test_wilcoxon_arg_type():
# Should be able to accept list as arguments.
# Address issue 6070.
arr = [1, 2, 3, 0, -1, 3, 1, 2, 1, 1, 2]
_ = stats.wilcoxon(arr, zero_method="pratt")
_ = stats.wilcoxon(arr, zero_method="zsplit")
_ = stats.wilcoxon(arr, zero_method="wilcox")
class TestKstat(TestCase):
def test_moments_normal_distribution(self):
np.random.seed(32149)
data = np.random.randn(12345)
moments = []
for n in [1, 2, 3, 4]:
moments.append(stats.kstat(data, n))
expected = [0.011315, 1.017931, 0.05811052, 0.0754134]
assert_allclose(moments, expected, rtol=1e-4)
# test equivalence with `stats.moment`
m1 = stats.moment(data, moment=1)
m2 = stats.moment(data, moment=2)
m3 = stats.moment(data, moment=3)
assert_allclose((m1, m2, m3), expected[:-1], atol=0.02, rtol=1e-2)
def test_empty_input(self):
assert_raises(ValueError, stats.kstat, [])
def test_nan_input(self):
data = np.arange(10.)
data[6] = np.nan
assert_equal(stats.kstat(data), np.nan)
def test_kstat_bad_arg(self):
# Raise ValueError if n > 4 or n < 1.
data = np.arange(10)
for n in [0, 4.001]:
assert_raises(ValueError, stats.kstat, data, n=n)
class TestKstatVar(TestCase):
def test_empty_input(self):
assert_raises(ValueError, stats.kstatvar, [])
def test_nan_input(self):
data = np.arange(10.)
data[6] = np.nan
assert_equal(stats.kstat(data), np.nan)
def test_bad_arg(self):
# Raise ValueError is n is not 1 or 2.
data = [1]
n = 10
assert_raises(ValueError, stats.kstatvar, data, n=n)
class TestPpccPlot(TestCase):
def setUp(self):
np.random.seed(7654321)
self.x = stats.loggamma.rvs(5, size=500) + 5
def test_basic(self):
N = 5
svals, ppcc = stats.ppcc_plot(self.x, -10, 10, N=N)
ppcc_expected = [0.21139644, 0.21384059, 0.98766719, 0.97980182, 0.93519298]
assert_allclose(svals, np.linspace(-10, 10, num=N))
assert_allclose(ppcc, ppcc_expected)
def test_dist(self):
# Test that we can specify distributions both by name and as objects.
svals1, ppcc1 = stats.ppcc_plot(self.x, -10, 10, dist='tukeylambda')
svals2, ppcc2 = stats.ppcc_plot(self.x, -10, 10, dist=stats.tukeylambda)
assert_allclose(svals1, svals2, rtol=1e-20)
assert_allclose(ppcc1, ppcc2, rtol=1e-20)
# Test that 'tukeylambda' is the default dist
svals3, ppcc3 = stats.ppcc_plot(self.x, -10, 10)
assert_allclose(svals1, svals3, rtol=1e-20)
assert_allclose(ppcc1, ppcc3, rtol=1e-20)
@dec.skipif(not have_matplotlib)
def test_plot_kwarg(self):
# Check with the matplotlib.pyplot module
fig = plt.figure()
fig.add_subplot(111)
stats.ppcc_plot(self.x, -20, 20, plot=plt)
plt.close()
# Check that a Matplotlib Axes object is accepted
fig.add_subplot(111)
ax = fig.add_subplot(111)
stats.ppcc_plot(self.x, -20, 20, plot=ax)
plt.close()
def test_invalid_inputs(self):
# `b` has to be larger than `a`
assert_raises(ValueError, stats.ppcc_plot, self.x, 1, 0)
# Raise ValueError when given an invalid distribution.
assert_raises(ValueError, stats.ppcc_plot, [1, 2, 3], 0, 1,
dist="plate_of_shrimp")
def test_empty(self):
# For consistency with probplot return for one empty array,
# ppcc contains all zeros and svals is the same as for normal array
# input.
svals, ppcc = stats.ppcc_plot([], 0, 1)
assert_allclose(svals, np.linspace(0, 1, num=80))
assert_allclose(ppcc, np.zeros(80, dtype=float))
class TestPpccMax(TestCase):
def test_ppcc_max_bad_arg(self):
# Raise ValueError when given an invalid distribution.
data = [1]
assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")
def test_ppcc_max_basic(self):
np.random.seed(1234567)
x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4
# On Python 2.6 the result is accurate to 5 decimals. On Python >= 2.7
# it is accurate up to 16 decimals
assert_almost_equal(stats.ppcc_max(x), -0.71215366521264145, decimal=5)
def test_dist(self):
np.random.seed(1234567)
x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4
# Test that we can specify distributions both by name and as objects.
max1 = stats.ppcc_max(x, dist='tukeylambda')
max2 = stats.ppcc_max(x, dist=stats.tukeylambda)
assert_almost_equal(max1, -0.71215366521264145, decimal=5)
assert_almost_equal(max2, -0.71215366521264145, decimal=5)
# Test that 'tukeylambda' is the default dist
max3 = stats.ppcc_max(x)
assert_almost_equal(max3, -0.71215366521264145, decimal=5)
def test_brack(self):
np.random.seed(1234567)
x = stats.tukeylambda.rvs(-0.7, loc=2, scale=0.5, size=10000) + 1e4
assert_raises(ValueError, stats.ppcc_max, x, brack=(0.0, 1.0, 0.5))
# On Python 2.6 the result is accurate to 5 decimals. On Python >= 2.7
# it is accurate up to 16 decimals
assert_almost_equal(stats.ppcc_max(x, brack=(0, 1)),
-0.71215366521264145, decimal=5)
# On Python 2.6 the result is accurate to 5 decimals. On Python >= 2.7
# it is accurate up to 16 decimals
assert_almost_equal(stats.ppcc_max(x, brack=(-2, 2)),
-0.71215366521264145, decimal=5)
class TestBoxcox_llf(TestCase):
def test_basic(self):
np.random.seed(54321)
x = stats.norm.rvs(size=10000, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf_expected = -x.size / 2. * np.log(np.sum(x.std()**2))
assert_allclose(llf, llf_expected)
def test_array_like(self):
np.random.seed(54321)
x = stats.norm.rvs(size=100, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf2 = stats.boxcox_llf(lmbda, list(x))
assert_allclose(llf, llf2, rtol=1e-12)
def test_2d_input(self):
# Note: boxcox_llf() was already working with 2-D input (sort of), so
# keep it like that. boxcox() doesn't work with 2-D input though, due
# to brent() returning a scalar.
np.random.seed(54321)
x = stats.norm.rvs(size=100, loc=10)
lmbda = 1
llf = stats.boxcox_llf(lmbda, x)
llf2 = stats.boxcox_llf(lmbda, np.vstack([x, x]).T)
assert_allclose([llf, llf], llf2, rtol=1e-12)
def test_empty(self):
assert_(np.isnan(stats.boxcox_llf(1, [])))
class TestBoxcox(TestCase):
def test_fixed_lmbda(self):
np.random.seed(12345)
x = stats.loggamma.rvs(5, size=50) + 5
xt = stats.boxcox(x, lmbda=1)
assert_allclose(xt, x - 1)
xt = stats.boxcox(x, lmbda=-1)
assert_allclose(xt, 1 - 1/x)
xt = stats.boxcox(x, lmbda=0)
assert_allclose(xt, np.log(x))
# Also test that array_like input works
xt = stats.boxcox(list(x), lmbda=0)
assert_allclose(xt, np.log(x))
def test_lmbda_None(self):
np.random.seed(1234567)
# Start from normal rv's, do inverse transform to check that
# optimization function gets close to the right answer.
np.random.seed(1245)
lmbda = 2.5
x = stats.norm.rvs(loc=10, size=50000)
x_inv = (x * lmbda + 1)**(-lmbda)
xt, maxlog = stats.boxcox(x_inv)
assert_almost_equal(maxlog, -1 / lmbda, decimal=2)
def test_alpha(self):
np.random.seed(1234)
x = stats.loggamma.rvs(5, size=50) + 5
# Some regular values for alpha, on a small sample size
_, _, interval = stats.boxcox(x, alpha=0.75)
assert_allclose(interval, [4.004485780226041, 5.138756355035744])
_, _, interval = stats.boxcox(x, alpha=0.05)
assert_allclose(interval, [1.2138178554857557, 8.209033272375663])
# Try some extreme values, see we don't hit the N=500 limit
x = stats.loggamma.rvs(7, size=500) + 15
_, _, interval = stats.boxcox(x, alpha=0.001)
assert_allclose(interval, [0.3988867, 11.40553131])
_, _, interval = stats.boxcox(x, alpha=0.999)
assert_allclose(interval, [5.83316246, 5.83735292])
def test_boxcox_bad_arg(self):
# Raise ValueError if any data value is negative.
x = np.array([-1])
assert_raises(ValueError, stats.boxcox, x)
def test_empty(self):
assert_(stats.boxcox([]).shape == (0,))
class TestBoxcoxNormmax(TestCase):
def setUp(self):
np.random.seed(12345)
self.x = stats.loggamma.rvs(5, size=50) + 5
def test_pearsonr(self):
maxlog = stats.boxcox_normmax(self.x)
assert_allclose(maxlog, 1.804465, rtol=1e-6)
def test_mle(self):
maxlog = stats.boxcox_normmax(self.x, method='mle')
assert_allclose(maxlog, 1.758101, rtol=1e-6)
# Check that boxcox() uses 'mle'
_, maxlog_boxcox = stats.boxcox(self.x)
assert_allclose(maxlog_boxcox, maxlog)
def test_all(self):
maxlog_all = stats.boxcox_normmax(self.x, method='all')
assert_allclose(maxlog_all, [1.804465, 1.758101], rtol=1e-6)
class TestBoxcoxNormplot(TestCase):
def setUp(self):
np.random.seed(7654321)
self.x = stats.loggamma.rvs(5, size=500) + 5
def test_basic(self):
N = 5
lmbdas, ppcc = stats.boxcox_normplot(self.x, -10, 10, N=N)
ppcc_expected = [0.57783375, 0.83610988, 0.97524311, 0.99756057,
0.95843297]
assert_allclose(lmbdas, np.linspace(-10, 10, num=N))
assert_allclose(ppcc, ppcc_expected)
@dec.skipif(not have_matplotlib)
def test_plot_kwarg(self):
# Check with the matplotlib.pyplot module
fig = plt.figure()
fig.add_subplot(111)
stats.boxcox_normplot(self.x, -20, 20, plot=plt)
plt.close()
# Check that a Matplotlib Axes object is accepted
fig.add_subplot(111)
ax = fig.add_subplot(111)
stats.boxcox_normplot(self.x, -20, 20, plot=ax)
plt.close()
def test_invalid_inputs(self):
# `lb` has to be larger than `la`
assert_raises(ValueError, stats.boxcox_normplot, self.x, 1, 0)
# `x` can not contain negative values
assert_raises(ValueError, stats.boxcox_normplot, [-1, 1], 0, 1)
def test_empty(self):
assert_(stats.boxcox_normplot([], 0, 1).size == 0)
class TestCircFuncs(TestCase):
def test_circfuncs(self):
x = np.array([355,5,2,359,10,350])
M = stats.circmean(x, high=360)
Mval = 0.167690146
assert_allclose(M, Mval, rtol=1e-7)
V = stats.circvar(x, high=360)
Vval = 42.51955609
assert_allclose(V, Vval, rtol=1e-7)
S = stats.circstd(x, high=360)
Sval = 6.520702116
assert_allclose(S, Sval, rtol=1e-7)
def test_circfuncs_small(self):
x = np.array([20,21,22,18,19,20.5,19.2])
M1 = x.mean()
M2 = stats.circmean(x, high=360)
assert_allclose(M2, M1, rtol=1e-5)
V1 = x.var()
V2 = stats.circvar(x, high=360)
assert_allclose(V2, V1, rtol=1e-4)
S1 = x.std()
S2 = stats.circstd(x, high=360)
assert_allclose(S2, S1, rtol=1e-4)
def test_circmean_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
M1 = stats.circmean(x, high=360)
M2 = stats.circmean(x.ravel(), high=360)
assert_allclose(M1, M2, rtol=1e-14)
M1 = stats.circmean(x, high=360, axis=1)
M2 = [stats.circmean(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(M1, M2, rtol=1e-14)
M1 = stats.circmean(x, high=360, axis=0)
M2 = [stats.circmean(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(M1, M2, rtol=1e-14)
def test_circvar_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
V1 = stats.circvar(x, high=360)
V2 = stats.circvar(x.ravel(), high=360)
assert_allclose(V1, V2, rtol=1e-11)
V1 = stats.circvar(x, high=360, axis=1)
V2 = [stats.circvar(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(V1, V2, rtol=1e-11)
V1 = stats.circvar(x, high=360, axis=0)
V2 = [stats.circvar(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(V1, V2, rtol=1e-11)
def test_circstd_axis(self):
x = np.array([[355,5,2,359,10,350],
[351,7,4,352,9,349],
[357,9,8,358,4,356]])
S1 = stats.circstd(x, high=360)
S2 = stats.circstd(x.ravel(), high=360)
assert_allclose(S1, S2, rtol=1e-11)
S1 = stats.circstd(x, high=360, axis=1)
S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])]
assert_allclose(S1, S2, rtol=1e-11)
S1 = stats.circstd(x, high=360, axis=0)
S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])]
assert_allclose(S1, S2, rtol=1e-11)
def test_circfuncs_array_like(self):
x = [355,5,2,359,10,350]
assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7)
assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7)
assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)
def test_empty(self):
assert_(np.isnan(stats.circmean([])))
assert_(np.isnan(stats.circstd([])))
assert_(np.isnan(stats.circvar([])))
def test_circmean_scalar(self):
x = 1.
M1 = x
M2 = stats.circmean(x)
assert_allclose(M2, M1, rtol=1e-5)
def test_circmean_range(self):
# regression test for gh-6420: circmean(..., high, low) must be
# between `high` and `low`
m = stats.circmean(np.arange(0, 2, 0.1), np.pi, -np.pi)
assert_(m < np.pi)
assert_(m > -np.pi)
def test_accuracy_wilcoxon():
freq = [1, 4, 16, 15, 8, 4, 5, 1, 2]
nums = range(-4, 5)
x = np.concatenate([[u] * v for u, v in zip(nums, freq)])
y = np.zeros(x.size)
T, p = stats.wilcoxon(x, y, "pratt")
assert_allclose(T, 423)
assert_allclose(p, 0.00197547303533107)
T, p = stats.wilcoxon(x, y, "zsplit")
assert_allclose(T, 441)
assert_allclose(p, 0.0032145343172473055)
T, p = stats.wilcoxon(x, y, "wilcox")
assert_allclose(T, 327)
assert_allclose(p, 0.00641346115861)
# Test the 'correction' option, using values computed in R with:
# > wilcox.test(x, y, paired=TRUE, exact=FALSE, correct={FALSE,TRUE})
x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112])
y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187])
T, p = stats.wilcoxon(x, y, correction=False)
assert_equal(T, 34)
assert_allclose(p, 0.6948866, rtol=1e-6)
T, p = stats.wilcoxon(x, y, correction=True)
assert_equal(T, 34)
assert_allclose(p, 0.7240817, rtol=1e-6)
def test_wilcoxon_result_attributes():
x = np.array([120, 114, 181, 188, 180, 146, 121, 191, 132, 113, 127, 112])
y = np.array([133, 143, 119, 189, 112, 199, 198, 113, 115, 121, 142, 187])
res = stats.wilcoxon(x, y, correction=False)
attributes = ('statistic', 'pvalue')
check_named_results(res, attributes)
def test_wilcoxon_tie():
# Regression test for gh-2391.
# Corresponding R code is:
# > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=FALSE)
# > result$p.value
# [1] 0.001565402
# > result = wilcox.test(rep(0.1, 10), exact=FALSE, correct=TRUE)
# > result$p.value
# [1] 0.001904195
stat, p = stats.wilcoxon([0.1] * 10)
expected_p = 0.001565402
assert_equal(stat, 0)
assert_allclose(p, expected_p, rtol=1e-6)
stat, p = stats.wilcoxon([0.1] * 10, correction=True)
expected_p = 0.001904195
assert_equal(stat, 0)
assert_allclose(p, expected_p, rtol=1e-6)
class TestMedianTest(TestCase):
def test_bad_n_samples(self):
# median_test requires at least two samples.
assert_raises(ValueError, stats.median_test, [1, 2, 3])
def test_empty_sample(self):
# Each sample must contain at least one value.
assert_raises(ValueError, stats.median_test, [], [1, 2, 3])
def test_empty_when_ties_ignored(self):
# The grand median is 1, and all values in the first argument are
# equal to the grand median. With ties="ignore", those values are
# ignored, which results in the first sample being (in effect) empty.
# This should raise a ValueError.
assert_raises(ValueError, stats.median_test,
[1, 1, 1, 1], [2, 0, 1], [2, 0], ties="ignore")
def test_empty_contingency_row(self):
# The grand median is 1, and with the default ties="below", all the
# values in the samples are counted as being below the grand median.
# This would result a row of zeros in the contingency table, which is
# an error.
assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1])
# With ties="above", all the values are counted as above the
# grand median.
assert_raises(ValueError, stats.median_test, [1, 1, 1], [1, 1, 1],
ties="above")
def test_bad_ties(self):
assert_raises(ValueError, stats.median_test, [1, 2, 3], [4, 5], ties="foo")
def test_bad_keyword(self):
assert_raises(TypeError, stats.median_test, [1, 2, 3], [4, 5], foo="foo")
def test_simple(self):
x = [1, 2, 3]
y = [1, 2, 3]
stat, p, med, tbl = stats.median_test(x, y)
# The median is floating point, but this equality test should be safe.
assert_equal(med, 2.0)
assert_array_equal(tbl, [[1, 1], [2, 2]])
# The expected values of the contingency table equal the contingency table,
# so the statistic should be 0 and the p-value should be 1.
assert_equal(stat, 0)
assert_equal(p, 1)
def test_ties_options(self):
# Test the contingency table calculation.
x = [1, 2, 3, 4]
y = [5, 6]
z = [7, 8, 9]
# grand median is 5.
# Default 'ties' option is "below".
stat, p, m, tbl = stats.median_test(x, y, z)
assert_equal(m, 5)
assert_equal(tbl, [[0, 1, 3], [4, 1, 0]])
stat, p, m, tbl = stats.median_test(x, y, z, ties="ignore")
assert_equal(m, 5)
assert_equal(tbl, [[0, 1, 3], [4, 0, 0]])
stat, p, m, tbl = stats.median_test(x, y, z, ties="above")
assert_equal(m, 5)
assert_equal(tbl, [[0, 2, 3], [4, 0, 0]])
def test_basic(self):
# median_test calls chi2_contingency to compute the test statistic
# and p-value. Make sure it hasn't screwed up the call...
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8]
stat, p, m, tbl = stats.median_test(x, y)
assert_equal(m, 4)
assert_equal(tbl, [[1, 2], [4, 2]])
exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl)
assert_allclose(stat, exp_stat)
assert_allclose(p, exp_p)
stat, p, m, tbl = stats.median_test(x, y, lambda_=0)
assert_equal(m, 4)
assert_equal(tbl, [[1, 2], [4, 2]])
exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, lambda_=0)
assert_allclose(stat, exp_stat)
assert_allclose(p, exp_p)
stat, p, m, tbl = stats.median_test(x, y, correction=False)
assert_equal(m, 4)
assert_equal(tbl, [[1, 2], [4, 2]])
exp_stat, exp_p, dof, e = stats.chi2_contingency(tbl, correction=False)
assert_allclose(stat, exp_stat)
assert_allclose(p, exp_p)
if __name__ == "__main__":
run_module_suite()
|