File: array3d.py

package info (click to toggle)
python-scipy 0.18.1-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 75,464 kB
  • ctags: 79,406
  • sloc: python: 143,495; cpp: 89,357; fortran: 81,650; ansic: 79,778; makefile: 364; sh: 265
file content (107 lines) | stat: -rw-r--r-- 2,521 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
""" A simple example to show how to access a 3D numpy array.  One
example shows how to access the numpy array using blitz type
converters and the other shows how it can be done without using blitz
by accessing the numpy array data directly.

"""
from __future__ import absolute_import, print_function

import scipy.weave as weave
from scipy.weave import converters
import numpy


def create_array():
    """Creates a simple 3D numpy array with unique values at each
    location in the matrix.

    """
    rows, cols, depth = 2, 3, 4
    arr = numpy.zeros((rows, cols, depth), 'i')
    count = 0
    for i in range(rows):
        for j in range(cols):
            for k in range(depth):
                arr[i,j,k] = count
                count += 1
    return arr


def pure_inline(arr):
    """Prints the given 3D array by accessing the raw numpy data and
    without using blitz converters.

    Notice the following:
      1. '\\n' to escape generating a newline in the C++ code.
      2. rows, cols = Narr[0], Narr[1].
      3. Array access using arr[(i*cols + j)*depth + k].

    """

    code = """
    int rows = Narr[0];
    int cols = Narr[1];
    int depth = Narr[2];
    for (int i=0; i < rows; i++)
    {
        for (int j=0; j < cols; j++)
        {
            printf("img[%3d][%3d]=", i, j);
            for (int k=0; k< depth; ++k)
            {
                printf(" %3d", arr[(i*cols + j)*depth + k]);
            }
            printf("\\n");
        }
    }
    """

    weave.inline(code, ['arr'])


def blitz_inline(arr):
    """Prints the given 3D array by using blitz converters which
    provides a numpy-like syntax for accessing the numpy data.

    Notice the following:
      1. '\\n' to escape generating a newline in the C++ code.
      2. rows, cols = Narr[0], Narr[1].
      3. Array access using arr(i, j, k).

    """

    code = """
    int rows = Narr[0];
    int cols = Narr[1];
    int depth = Narr[2];
    for (int i=0; i < rows; i++)
    {
        for (int j=0; j < cols; j++)
        {
            printf("img[%3d][%3d]=", i, j);
            for (int k=0; k< depth; ++k)
            {
                printf(" %3d", arr(i, j, k));
            }
            printf("\\n");
        }
    }
    """

    weave.inline(code, ['arr'], type_converters=converters.blitz)


def main():
    arr = create_array()
    print("numpy:")
    print(arr)

    print("Pure Inline:")
    pure_inline(arr)

    print("Blitz Inline:")
    blitz_inline(arr)


if __name__ == '__main__':
    main()