1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
""" Cast Copy Tranpose is used in numpy LinearAlgebra.py to convert
C ordered arrays to Fortran order arrays before calling Fortran
functions. A couple of C implementations are provided here that
show modest speed improvements. One is an "inplace" transpose that
does an in memory transpose of an arrays elements. This is the
fastest approach and is beneficial if you don't need to keep the
original array.
"""
# C:\home\ej\wrk\scipy\compiler\examples>python cast_copy_transpose.py
# Cast/Copy/Transposing (150,150)array 1 times
# speed in python: 0.870999932289
# speed in c: 0.25
# speed up: 3.48
# inplace transpose c: 0.129999995232
# speed up: 6.70
from __future__ import absolute_import, print_function
import numpy
from numpy import *
import sys
sys.path.insert(0,'..')
import scipy.weave.inline_tools as inline_tools
import scipy.weave.c_spec as c_spec
from scipy.weave.converters import blitz as cblitz
def _cast_copy_transpose(type,a_2d):
assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
code = """
for(int i = 0; i < Na_2d[0]; i++)
for(int j = 0; j < Na_2d[1]; j++)
new_array(i,j) = a_2d(j,i);
"""
inline_tools.inline(code,['new_array','a_2d'],
type_converters=cblitz,
compiler='gcc',
verbose=1)
return new_array
def _cast_copy_transpose2(type,a_2d):
assert(len(shape(a_2d)) == 2)
new_array = zeros(shape(a_2d),type)
code = """
const int I = Na_2d[0];
const int J = Na_2d[1];
for(int i = 0; i < I; i++)
{
int new_off = i*J;
int old_off = i;
for(int j = 0; j < J; j++)
{
new_array[new_off++] = a_2d[old_off];
old_off += I;
}
}
"""
inline_tools.inline(code,['new_array','a_2d'],compiler='gcc',verbose=1)
return new_array
def _inplace_transpose(a_2d):
assert(len(shape(a_2d)) == 2)
numeric_type = c_spec.num_to_c_types[a_2d.dtype.char]
code = """
%s temp;
for(int i = 0; i < Na_2d[0]; i++)
for(int j = 0; j < Na_2d[1]; j++)
{
temp = a_2d(i,j);
a_2d(i,j) = a_2d(j,i);
a_2d(j,i) = temp;
}
""" % numeric_type
inline_tools.inline(code,['a_2d'],
type_converters=cblitz,
compiler='gcc',
extra_compile_args=['-funroll-all-loops'],
verbose=2)
return a_2d
#assert(len(shape(a_2d)) == 2)
#type = a_2d.typecode()
#new_array = zeros(shape(a_2d),type)
##trans_a_2d = transpose(a_2d)
#numeric_type = c_spec.num_to_c_types[type]
#code = """
# for(int i = 0; i < Na_2d[0]; i++)
# for(int j = 0; j < Na_2d[1]; j++)
# new_array(i,j) = (%s) a_2d(j,i);
# """ % numeric_type
#inline_tools.inline(code,['new_array','a_2d'],
# type_converters = cblitz,
# compiler='gcc',
# verbose = 1)
#return new_array
def cast_copy_transpose(type,*arrays):
results = []
for a in arrays:
results.append(_cast_copy_transpose(type,a))
if len(results) == 1:
return results[0]
else:
return results
def cast_copy_transpose2(type,*arrays):
results = []
for a in arrays:
results.append(_cast_copy_transpose2(type,a))
if len(results) == 1:
return results[0]
else:
return results
def inplace_cast_copy_transpose(*arrays):
results = []
for a in arrays:
results.append(_inplace_transpose(a))
if len(results) == 1:
return results[0]
else:
return results
def _castCopyAndTranspose(type, *arrays):
cast_arrays = ()
import copy
for a in arrays:
if a.dtype == numpy.dtype(type):
cast_arrays = cast_arrays + (copy.copy(numpy.transpose(a)),)
else:
cast_arrays = cast_arrays + (copy.copy(
numpy.transpose(a).astype(type)),)
if len(cast_arrays) == 1:
return cast_arrays[0]
else:
return cast_arrays
import time
def compare(m,n):
a = ones((n,n),float64)
type = float32
print('Cast/Copy/Transposing (%d,%d)array %d times' % (n,n,m))
t1 = time.time()
for i in range(m):
for i in range(n):
b = _castCopyAndTranspose(type,a)
t2 = time.time()
py = (t2-t1)
print(' speed in python:', (t2 - t1)/m)
# load into cache
b = cast_copy_transpose(type,a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = cast_copy_transpose(type,a)
t2 = time.time()
print(' speed in c (blitz):',(t2 - t1) / m)
print(' speed up (blitz): %3.2f' % (py/(t2-t1)))
# load into cache
b = cast_copy_transpose2(type,a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = cast_copy_transpose2(type,a)
t2 = time.time()
print(' speed in c (pointers):',(t2 - t1) / m)
print(' speed up (pointers): %3.2f' % (py/(t2-t1)))
# inplace tranpose
b = _inplace_transpose(a)
t1 = time.time()
for i in range(m):
for i in range(n):
b = _inplace_transpose(a)
t2 = time.time()
print(' inplace transpose c:',(t2 - t1) / m)
print(' speed up: %3.2f' % (py/(t2-t1)))
if __name__ == "__main__":
m,n = 1,500
compare(m,n)
|