1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
"""
"""
from __future__ import absolute_import, print_function
# C:\home\ej\wrk\scipy\weave\examples>python vq.py
# vq with 1000 observation, 10 features and 30 codes fo 100 iterations
# speed in python: 0.150119999647
# [25 29] [ 2.49147266 3.83021032]
# speed in standard c: 0.00710999965668
# [25 29] [ 2.49147266 3.83021032]
# speed up: 21.11
# speed inline/blitz: 0.0186300003529
# [25 29] [ 2.49147272 3.83021021]
# speed up: 8.06
# speed inline/blitz2: 0.00461000084877
# [25 29] [ 2.49147272 3.83021021]
# speed up: 32.56
from numpy import *
import sys
sys.path.insert(0,'..')
import scipy.weave.inline_tools as inline_tools
import scipy.weave.converters as converters
blitz_type_converters = converters.blitz
import scipy.weave.c_spec as c_spec
def vq(obs,code_book):
# make sure we're looking at arrays.
obs = asarray(obs)
code_book = asarray(code_book)
# check for 2d arrays and compatible sizes.
obs_sh = shape(obs)
code_book_sh = shape(code_book)
assert(len(obs_sh) == 2 and len(code_book_sh) == 2)
assert(obs_sh[1] == code_book_sh[1])
type = c_spec.num_to_c_types[obs.typecode()]
# band aid for now.
ar_type = 'PyArray_FLOAT'
code = """
#line 37 "vq.py"
// Use tensor notation.
blitz::Array<%(type)s,2> dist_sq(Ncode_book[0],Nobs[0]);
blitz::firstIndex i;
blitz::secondIndex j;
blitz::thirdIndex k;
dist_sq = sum(pow2(obs(j,k) - code_book(i,k)),k);
// Surely there is a better way to do this...
PyArrayObject* py_code = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_LONG);
blitz::Array<int,1> code((int*)(py_code->data),
blitz::shape(Nobs[0]), blitz::neverDeleteData);
code = minIndex(dist_sq(j,i),j);
PyArrayObject* py_min_dist = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_FLOAT);
blitz::Array<float,1> min_dist((float*)(py_min_dist->data),
blitz::shape(Nobs[0]), blitz::neverDeleteData);
min_dist = sqrt(min(dist_sq(j,i),j));
py::tuple results(2);
results[0] = py_code;
results[1] = py_min_dist;
return_val = results;
""" % locals()
code, distortion = inline_tools.inline(code,['obs','code_book'],
type_converters=blitz_type_converters,
compiler='gcc',
verbose=1)
return code, distortion
def vq2(obs,code_book):
""" doesn't use blitz (except in conversion)
ALSO DOES NOT HANDLE STRIDED ARRAYS CORRECTLY
"""
# make sure we're looking at arrays.
obs = asarray(obs)
code_book = asarray(code_book)
# check for 2d arrays and compatible sizes.
obs_sh = shape(obs)
code_book_sh = shape(code_book)
assert(len(obs_sh) == 2 and len(code_book_sh) == 2)
assert(obs_sh[1] == code_book_sh[1])
assert(obs.typecode() == code_book.typecode())
type = c_spec.num_to_c_types[obs.typecode()]
# band aid for now.
ar_type = 'PyArray_FLOAT'
code = """
#line 83 "vq.py"
// THIS DOES NOT HANDLE STRIDED ARRAYS CORRECTLY
// Surely there is a better way to do this...
PyArrayObject* py_code = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_LONG);
PyArrayObject* py_min_dist = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_FLOAT);
int* raw_code = (int*)(py_code->data);
float* raw_min_dist = (float*)(py_min_dist->data);
%(type)s* raw_obs = obs.data();
%(type)s* raw_code_book = code_book.data();
%(type)s* this_obs = NULL;
%(type)s* this_code = NULL;
int Nfeatures = Nobs[1];
float diff,dist;
for(int i=0; i < Nobs[0]; i++)
{
this_obs = &raw_obs[i*Nfeatures];
raw_min_dist[i] = (%(type)s)10000000.; // big number
for(int j=0; j < Ncode_book[0]; j++)
{
this_code = &raw_code_book[j*Nfeatures];
dist = 0;
for(int k=0; k < Nfeatures; k++)
{
diff = this_obs[k] - this_code[k];
dist += diff*diff;
}
dist = dist;
if (dist < raw_min_dist[i])
{
raw_code[i] = j;
raw_min_dist[i] = dist;
}
}
raw_min_dist[i] = sqrt(raw_min_dist[i]);
}
py::tuple results(2);
results[0] = py_code;
results[1] = py_min_dist;
return_val = results;
""" % locals()
code, distortion = inline_tools.inline(code,['obs','code_book'],
type_converters=blitz_type_converters,
compiler='gcc',
verbose=1)
return code, distortion
def vq3(obs,code_book):
""" Uses standard array conversion completely bi-passing blitz.
THIS DOES NOT HANDLE STRIDED ARRAYS CORRECTLY
"""
# make sure we're looking at arrays.
obs = asarray(obs)
code_book = asarray(code_book)
# check for 2d arrays and compatible sizes.
obs_sh = shape(obs)
code_book_sh = shape(code_book)
assert(len(obs_sh) == 2 and len(code_book_sh) == 2)
assert(obs_sh[1] == code_book_sh[1])
assert(obs.typecode() == code_book.typecode())
type = c_spec.num_to_c_types[obs.typecode()]
code = """
#line 139 "vq.py"
// Surely there is a better way to do this...
PyArrayObject* py_code = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_LONG);
PyArrayObject* py_min_dist = (PyArrayObject*) PyArray_FromDims(1,&Nobs[0],PyArray_FLOAT);
int* code_data = (int*)(py_code->data);
float* min_dist_data = (float*)(py_min_dist->data);
%(type)s* this_obs = NULL;
%(type)s* this_code = NULL;
int Nfeatures = Nobs[1];
float diff,dist;
for(int i=0; i < Nobs[0]; i++)
{
this_obs = &obs_data[i*Nfeatures];
min_dist_data[i] = (float)10000000.; // big number
for(int j=0; j < Ncode_book[0]; j++)
{
this_code = &code_book_data[j*Nfeatures];
dist = 0;
for(int k=0; k < Nfeatures; k++)
{
diff = this_obs[k] - this_code[k];
dist += diff*diff;
}
if (dist < min_dist_data[i])
{
code_data[i] = j;
min_dist_data[i] = dist;
}
}
min_dist_data[i] = sqrt(min_dist_data[i]);
}
py::tuple results(2);
results[0] = py_code;
results[1] = py_min_dist;
return_val = results;
""" % locals()
# this is an unpleasant way to specify type factories -- work on it.
import ext_tools
code, distortion = inline_tools.inline(code,['obs','code_book'])
return code, distortion
import time
import RandomArray
def compare(m,Nobs,Ncodes,Nfeatures):
obs = RandomArray.normal(0.,1.,(Nobs,Nfeatures))
codes = RandomArray.normal(0.,1.,(Ncodes,Nfeatures))
import scipy.cluster.vq
scipy.cluster.vq
print('vq with %d observation, %d features and %d codes for %d iterations' %
(Nobs,Nfeatures,Ncodes,m))
t1 = time.time()
for i in range(m):
code,dist = scipy.cluster.vq.py_vq(obs,codes)
t2 = time.time()
py = (t2-t1)
print(' speed in python:', (t2 - t1)/m)
print(code[:2],dist[:2])
t1 = time.time()
for i in range(m):
code,dist = scipy.cluster.vq.vq(obs,codes)
t2 = time.time()
print(' speed in standard c:', (t2 - t1)/m)
print(code[:2],dist[:2])
print(' speed up: %3.2f' % (py/(t2-t1)))
# load into cache
b = vq(obs,codes)
t1 = time.time()
for i in range(m):
code,dist = vq(obs,codes)
t2 = time.time()
print(' speed inline/blitz:',(t2 - t1) / m)
print(code[:2],dist[:2])
print(' speed up: %3.2f' % (py/(t2-t1)))
# load into cache
b = vq2(obs,codes)
t1 = time.time()
for i in range(m):
code,dist = vq2(obs,codes)
t2 = time.time()
print(' speed inline/blitz2:',(t2 - t1) / m)
print(code[:2],dist[:2])
print(' speed up: %3.2f' % (py/(t2-t1)))
# load into cache
b = vq3(obs,codes)
t1 = time.time()
for i in range(m):
code,dist = vq3(obs,codes)
t2 = time.time()
print(' speed using C arrays:',(t2 - t1) / m)
print(code[:2],dist[:2])
print(' speed up: %3.2f' % (py/(t2-t1)))
if __name__ == "__main__":
compare(100,1000,30,10)
#compare(1,10,2,10)
|