File: basic.py

package info (click to toggle)
python-scipy 0.3.2-6
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 13,572 kB
  • ctags: 20,326
  • sloc: ansic: 87,138; fortran: 51,876; python: 47,747; cpp: 2,134; objc: 384; makefile: 175; sh: 83
file content (334 lines) | stat: -rw-r--r-- 10,559 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
"""
Discrete Fourier Transforms - basic.py 
"""
# Created by Pearu Peterson, August,September 2002

__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
           'fft2','ifft2']

from scipy_base import asarray, zeros, swapaxes
import _fftpack as fftpack

import atexit
atexit.register(fftpack.destroy_zfft_cache)
atexit.register(fftpack.destroy_zfftnd_cache)
atexit.register(fftpack.destroy_drfft_cache)
del atexit

def _fix_shape(x, n, axis):
    """ Internal auxiliary function for _raw_fft, _raw_fftnd."""
    s = list(x.shape)
    if s[axis] > n:
        index = [slice(None)]*len(s)
        index[axis] = slice(0,n)
        x = x[index]
    else:
        index = [slice(None)]*len(s)
        index[axis] = slice(0,s[axis])
        s[axis] = n
        z = zeros(s,x.typecode())
        z[index] = x
        x = z
    return x


def _raw_fft(x, n, axis, direction, overwrite_x, work_function):
    """ Internal auxiliary function for fft, ifft, rfft, irfft."""
    if n is None:
        n = x.shape[axis]
    elif n != x.shape[axis]:
        x = _fix_shape(x,n,axis)
        overwrite_x = 1
    if axis == -1 or axis == len(x.shape)-1:
        r = work_function(x,n,direction,overwrite_x=overwrite_x)
    else:
        x = swapaxes(x, axis, -1)
        r = work_function(x,n,direction,overwrite_x=overwrite_x)
        r = swapaxes(r, axis, -1)
    return r


def fft(x, n=None, axis=-1, overwrite_x=0):
    """ fft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return discrete Fourier transform of arbitrary type sequence x.

    The returned complex array contains
      [y(0),y(1),..,y(n/2-1),y(-n/2),...,y(-1)]        if n is even
      [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)]  if n is odd
    where
      y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n)
      j = 0..n-1
    Note that y(-j) = y(n-j).

    Optional input:
      n
        Defines the length of the Fourier transform. If n is not
        specified then n=x.shape[axis] is set. If n<x.shape[axis],
        x is truncated. If n>x.shape[axis], x is zero-padded.
      axis
        The trasnform is applied along the given axis of the input
        array (or the newly constructed array if n argument was used).
      overwrite_x
        If set to true, the contents of x can be destroyed.

    Notes:
      y == fft(ifft(y)) within numerical accuracy.
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t=='D':
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfft
    elif t=='F':
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zrfft

    #return _raw_fft(tmp,n,axis,1,overwrite_x,work_function)
    if n is None:
        n = tmp.shape[axis]
    elif n != tmp.shape[axis]:
        tmp = _fix_shape(tmp,n,axis)
        overwrite_x = 1

    if axis == -1 or axis == len(tmp.shape) - 1:
        return work_function(tmp,n,1,0,overwrite_x)

    tmp = swapaxes(tmp, axis, -1)
    tmp = work_function(tmp,n,1,0,overwrite_x)
    return swapaxes(tmp, axis, -1)

def ifft(x, n=None, axis=-1, overwrite_x=0):
    """ ifft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return inverse discrete Fourier transform of arbitrary type
    sequence x.

    The returned complex array contains
      [y(0),y(1),...,y(n-1)]
    where
      y(j) = 1/n sum[k=0..n-1] x[k] * exp(sqrt(-1)*j*k* 2*pi/n)

    Optional input: see fft.__doc__
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t=='D':
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfft
    elif t=='F':
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zrfft

    #return _raw_fft(tmp,n,axis,-1,overwrite_x,work_function)
    if n is None:
        n = tmp.shape[axis]
    elif n != tmp.shape[axis]:
        tmp = _fix_shape(tmp,n,axis)
        overwrite_x = 1

    if axis == -1 or axis == len(tmp.shape) - 1:
        return work_function(tmp,n,-1,1,overwrite_x)

    tmp = swapaxes(tmp, axis, -1)
    tmp = work_function(tmp,n,-1,1,overwrite_x)
    return swapaxes(tmp, axis, -1)


def rfft(x, n=None, axis=-1, overwrite_x=0):
    """ rfft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return discrete Fourier transform of real sequence x.

    The returned real arrays contains
      [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))]              if n is even
      [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))]   if n is odd
    where
      y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n)
      j = 0..n-1
    Note that y(-j) = y(n-j).

    Optional input:
      n
        Defines the length of the Fourier transform. If n is not
        specified then n=x.shape[axis] is set. If n<x.shape[axis],
        x is truncated. If n>x.shape[axis], x is zero-padded.
      axis
        The transform is applied along the given axis of the input
        array (or the newly constructed array if n argument was used).
      overwrite_x
        If set to true, the contents of x can be destroyed.

    Notes:
      y == rfft(irfft(y)) within numerical accuracy.
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t in 'DF':
        raise TypeError,"1st argument must be real sequence"
    work_function = fftpack.drfft
    return _raw_fft(tmp,n,axis,1,overwrite_x,work_function)


def irfft(x, n=None, axis=-1, overwrite_x=0):
    """ irfft(x, n=None, axis=-1, overwrite_x=0) -> y

    Return inverse discrete Fourier transform of real sequence x.
    The contents of x is interpreted as the output of rfft(..)
    function.

    The returned real array contains
      [y(0),y(1),...,y(n-1)]
    where for n is even
      y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
                                   * exp(sqrt(-1)*j*k* 2*pi/n)
                  + c.c. + x[0] + (-1)**(j) x[n-1])
    and for n is odd
      y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
                                   * exp(sqrt(-1)*j*k* 2*pi/n)
                  + c.c. + x[0])
    c.c. denotes complex conjugate of preceeding expression.

    Optional input: see rfft.__doc__
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t in 'DF':
        raise TypeError,"1st argument must be real sequence"
    work_function = fftpack.drfft
    return _raw_fft(tmp,n,axis,-1,overwrite_x,work_function)


def _raw_fftnd(x, s, axes, direction, overwrite_x, work_function):
    """ Internal auxiliary function for fftnd, ifftnd."""
    if s is None:
        s = x.shape
    s = tuple(s)
    if s!=x.shape:
        assert len(s)<=len(x.shape)
        for i in range(-len(s),0):
            if x.shape[i]!=s[i]:
                x = _fix_shape(x,s[i],i)
    if axes is None:
        return work_function(x,s,direction,overwrite_x=overwrite_x)

    #XXX: should we allow/check for repeated indices in axes?
    # If allowed then using it has an effect of reducing the shape
    # implicitly. 
    s = [x.shape[i] for i in axes]
    s = [1]*(len(x.shape)-len(s)) + s
    swaps = []
    state = range(-len(s),0)
    for i in range(-1,-len(axes)-1,-1):
        j = state[axes[i]]
        if i==j: continue
        state[i],state[j]=state[j],state[i]
        swaps.append((j,i))
        x = swapaxes(x, j,i)
    r = work_function(x,s,direction,overwrite_x=overwrite_x)
    swaps.reverse()
    for i,j in swaps:
        r = swapaxes(r,i,j)
    return r


def fftn(x, shape=None, axes=None, overwrite_x=0):
    """ fftn(x, shape=None, axes=None, overwrite_x=0) -> y
    
    Return multi-dimensional discrete Fourier transform of arbitrary
    type sequence x.

    The returned array contains

      y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

    where d = len(x.shape) and n = x.shape.
    Note that y[..., -j_i, ...] = y[..., n_i-j_i, ...].

    Optional input:
      shape
        Defines the shape of the Fourier transform. If shape is not
        specified then shape=take(x.shape,axes).
        If shape[i]>x.shape[i] then the i-th dimension is padded with
        zeros. If shape[i]<x.shape[i], then the i-th dimension is
        truncated to desired length shape[i].
      axes
        The transform is applied along the given axes of the input
        array (or the newly constructed array if shape argument was
        used).
      overwrite_x
        If set to true, the contents of x can be destroyed.

    Notes:
      y == fftn(ifftn(y)) within numerical accuracy.
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t=='D':
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfftnd
    elif t=='F':
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zfftnd
    return _raw_fftnd(tmp,shape,axes,1,overwrite_x,work_function)


def ifftn(x, shape=None, axes=None, overwrite_x=0):
    """ ifftn(x, s=None, axes=None, overwrite_x=0) -> y
    
    Return inverse multi-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    The returned array contains

      y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

    where d = len(x.shape), n = x.shape, and p = prod[i=1..d] n_i.

    Optional input: see fftn.__doc__
    """
    tmp = asarray(x)
    t = tmp.typecode()
    if t=='D':
        overwrite_x = overwrite_x or (tmp is not x and not \
                                      hasattr(x,'__array__'))
        work_function = fftpack.zfftnd
    elif t=='F':
        raise NotImplementedError
    else:
        overwrite_x = 1
        work_function = fftpack.zfftnd
    return _raw_fftnd(tmp,shape,axes,-1,overwrite_x,work_function)


def fft2(x, shape=None, axes=(-2,-1), overwrite_x=0):
    """ fft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y
    
    Return two-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    See fftn.__doc__ for more information.
    """
    return fftn(x,shape,axes,overwrite_x)


def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0):
    """ ifft2(x, shape=None, axes=(-2,-1), overwrite_x=0) -> y
    
    Return inverse two-dimensional discrete Fourier transform of
    arbitrary type sequence x.

    See ifftn.__doc__ for more information.
    """
    return ifftn(x,shape,axes,overwrite_x)