File: selection.py

package info (click to toggle)
python-scipy 0.3.2-6
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 13,572 kB
  • ctags: 20,326
  • sloc: ansic: 87,138; fortran: 51,876; python: 47,747; cpp: 2,134; objc: 384; makefile: 175; sh: 83
file content (94 lines) | stat: -rw-r--r-- 3,096 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#genetic algorithm selection routines
#based on galib. 
#exception - these classes only work on the scaled fitness
from ga_util import *
import scipy.stats as rv
stats = rv
import pdb
from Numeric import *
from scipy_base.fastumath import *

class selector:
	def update(self,pop): pass
	def select(self,pop): raise GAError, 'selector.select() must be overridden'
	def clear(self): pass
class uniform_selector(selector):
	def select(self,pop,cnt = 1):
		if cnt == 1: return rv.choice(pop)
		res = []
		for i in range(cnt): res.append(rv.choice(pop))
		return res

class rank_selector(selector):
	def select(self,pop,cnt = 1):
		pop.sort()
		studliest = pop[0].fitness()
		tied_for_first = filter(lambda x,y=studliest: x.fitness()==y,pop)
		if cnt == 1: return rv.choice(tied_for_first)
		res = []
		for i in range(cnt): res.append(rv.choice(tied_for_first))
		return res

#scores must all be positive		
class roulette_selector(selector):
	def update(self,pop):
		self.pop = pop[:]
		sz = len(pop)
		if not sz: raise GAError, 'srs_selector - the pop size is 0!'
		f =self.pop.fitnesses()
		f_max = max(f); f_min = min(f)
		if not ( (f_max >= 0 and f_min >= 0) or 
			   (f_max <= 0 and f_min <= 0)):
			   raise GAError, 'srs_selector requires all fitnesses values to be either strictly positive or strictly negative'
		if f_max == f_min: f = ones(shape(f),typecode = Float32)
		self.dart_board = add.accumulate(f / sum(f))
	def select(self,pop,cnt = 1):
		returns = []
		for i in range(cnt):
			dart = rv.random()
			idx = 0
			#binary search would be faster
			while dart > self.dart_board[idx]: idx = idx + 1
			returns.append(self.pop[idx])
		if cnt == 1: return returns[0]
		else: return returns	
	def clear(self): 
		del self.pop
#scores must all be positive		
class srs_selector(selector):
	def update(self,pop):
		sz = len(pop)
		if not sz: raise GAError, 'srs_selector - the pop size is 0!'
		f =pop.fitnesses()
		f_max = max(f); f_min = min(f)
		if not ( (f_max >= 0. and f_min >= 0.) or 
			   (f_max <= 0. and f_min <= 0.)):
			   raise GAError, 'srs_selector requires all fitnesses values to be either strictly positive or strictly negative - min %f, max %f' %(f_min,f_max)
		f_avg = sum(f)/sz
		if f_avg == 0.: e = ones(shape(f),typecode = Float32)
		else:
			if pop.min_or_max() == 'max': e = f/f_avg
			else: e = (-f+f_max+f_min)/f_avg
		self.expected_value = e
		garauntee,chance = divmod(e,1.)
#		garauntee = floor(e)
#		chance = remainder(e,1)
		choices = []
		for i in xrange(sz): choices = choices + [pop[i]] * int(garauntee[i])
		#now deal with the remainder
		dart_board = add.accumulate(chance / sum(chance))
		for i in range(len(choices),sz):
			 dart = rv.random()
			 idx = 0
			 while dart > dart_board[idx]: idx = idx + 1
			 choices.append(pop[idx])
		self.choices = choices			 
	def select(self,pop,cnt = 1): #ignore the past in pop
		res = []
		for i in range(cnt): res.append(rv.choice(self.choices))
#		for chosen in res: self.choices.remove(chosen)
		if cnt == 1: return res[0]
		return res	
	def clear(self): 
		if hasattr(self,'choices'):
			del self.choices