File: tree_opt.py

package info (click to toggle)
python-scipy 0.3.2-6
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 13,572 kB
  • ctags: 20,326
  • sloc: ansic: 87,138; fortran: 51,876; python: 47,747; cpp: 2,134; objc: 384; makefile: 175; sh: 83
file content (217 lines) | stat: -rw-r--r-- 7,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
    some basic language objects
    if you don't specify a node_type for these, it is usually a good idea to 
    not allow crossovers at these nodes.  That would allow two (maybe different)
    list_range nodes to exchange places.
"""

import tree
import gene


"""
import weakdict
class opt_object(tree.tree_node,weakdict.WeakValue):
	opt_dict = weakdict.WeakDict()
	def __init__(self,node_type, sub_nodes):
		tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
		weakdict.WeakValue.__init__(self)
		opt_object.opt_dict[id(self)] = self
	def _create(self,parent = None):	
		new = tree.tree_node._create(self,parent)
		weakdict.WeakValue.__init__(new)
		self._WeakValue__cid = None #force a reset of the __cid value
		weakdict.WeakValue.__init__(new) #now get a new value for it
		opt_object.opt_dict[id(new)] = new
		return new		
	def __del__(self): 
		tree.tree_node.__del__(self)
		weakdict.WeakValue.__del__(self)
"""		

class opt_object(tree.tree_node):
	def __init__(self,node_type, sub_nodes):
		tree.tree_node.__init__(self,sub_nodes,node_type=node_type)

class float_range(gene.float_gene,opt_object):
	optimize = 1
	def __init__(self,bounds,node_type='float_range', sub_nodes = 0):
		opt_object.__init__(self,node_type,sub_nodes)
		gene.float_gene.__init__(self,bounds[:2])
		tree.tree_node.__init__(self,sub_nodes,node_type=node_type)
		if(len(bounds) == 3): self.default = bounds[2]
		else: self.default = (bounds[0] + bounds[1])/2.
		self._value = self.default
		print self._value
	def clone(self,parent = None):return tree.tree_node.clone(self,parent)			
	"""
	def mutate(self):
		m = gene.float_gene.mutate(self)
		if(m and self.parent): self.parent.recalc(force_parent=1)
		return m
	"""
	def scale(self,sc):
		self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
		self.default = self.default*sc
		self._value = self._value*sc
	def defaultize(self):
		self._value = self.default
		for child in self._children: child.defaultize()		
	def create(self,parent):
		new = tree.tree_node.create(self,parent)
		new.initialize() 
		gene.float_gene.initialize(new) 		
		return new
	def __del__(self):
#		gene.float_gene.__del__(self)
		opt_object.__del__(self)	
	def __repr__(self):
		try: 
			val = self.value()
			if( val < .01 or val > 1000): v = "%4.3e" % self.value()
			else: v = "%4.3f" % self.value()				
		except gene.GAError: v = 'not initialized'
		self.label = '%s = %s' % (self.node_type, v)		
		return tree.tree_node.__repr__(self)
import math
class log_float_range(gene.log_float_gene,opt_object):
	optimize = 1
	def __init__(self,bounds,node_type='log_float_range', sub_nodes = 0):
		gene.log_float_gene.__init__(self,bounds[:2])
		opt_object.__init__(self,node_type,sub_nodes)
		if(len(bounds) == 3): self.default = bounds[2]
		else: self.default = (bounds[0] + bounds[1])/2.
		self._value = math.log10(self.default)
	def clone(self,parent = None):return tree.tree_node.clone(self,parent)		
	"""
	def mutate(self):
		m=gene.log_float_gene.mutate(self)
		if(m and self.parent): self.parent.recalc(force_parent=1)
		return m
	"""
	def scale(self,sc):
		self.default = self.default*sc
		sc = log10(sc)
		self.bounds = (self.bounds[0]*sc,self.bounds[1]*sc)
		self._value = self._value*sc
	def defaultize(self):
		self._value = self.default
		for child in self._children: child.defaultize()		
	def create(self,parent):
		new = tree.tree_node.create(self,parent)
		new.initialize() 
		gene.log_float_gene.initialize(new) 		
		return new
	def __del__(self):
#		gene.log_float_gene.__del__(self)
		opt_object.__del__(self)
	def __repr__(self):
		try: 
			val = self.value()
			if( val < .01 or val > 1000): v = "%4.3e" % self.value()
			else: v = "%4.3f" % self.value()				
		except gene.GAError: v = 'not initialized'
		self.label = '%s = %s' % (self.node_type, v)		
		return tree.tree_node.__repr__(self)
		
class list_range(gene.list_gene,opt_object):
	optimize = 1
	def __init__(self,allele_set,node_type='list_range', default=None, sub_nodes = 0):
		gene.list_gene.__init__(self,allele_set)
		opt_object.__init__(self,node_type,sub_nodes)
		gene.list_gene.initialize(self) # prevents trouble in tree generation
		if(default): self.default = default
		else: self.default = allele_set[int(len(allele_set)/2.)] #the center item
		self._value = self.default
	"""
	def mutate(self):
		m=gene.list_gene.mutate(self)
		if(m and self.parent): self.parent.recalc(force_parent=1)
		return m
	"""
	def clone(self,parent = None):return tree.tree_node.clone(self,parent)		
	def scale(self,sc):
		for i in range(len(self.allele_set)): 
			self.allele_set[i] = self.allele_set[i] *sc
		self.default = self.default*sc
		self._value = self._value*sc
	def defaultize(self):
		self._value = self.default
		for child in self._children: child.defaultize()		
	def create(self,parent):
		new = tree.tree_node.create(self,parent)
		new.initialize()
		gene.list_gene.initialize(new) 
		return new
	def __del__(self):
#		gene.list_gene.__del__(self)
		opt_object.__del__(self)
	def __repr__(self):
		self.label = '%s = %s' % (self.node_type, self.value())		
		return tree.tree_node.__repr__(self)

class val(gene.frozen,opt_object):
	optimize = 0
	def __init__(self,val,node_type='val',sub_nodes=0):
		gene.frozen.__init__(self,val)
		opt_object.__init__(self,node_type,sub_nodes)
	def clone(self,parent = None):return tree.tree_node.clone(self,parent)		
	def scale(self,sc): self._value = self._value*sc
	def defaultize(self): pass
	def create(self,parent):
		new = tree.tree_node.create(self,parent)
		new.initialize() 
		return new
	def __del__(self):
#		gene.frozen.__del__(self)
		opt_object.__del__(self)	
	def __repr__(self):
		self.label = '%s = %s' % (self.node_type, self.value())		
		return tree.tree_node.__repr__(self)


"""
These two routines are useful for picking off or replacing the nodes in a 
tree that should be that should be numerically optimized.  They are helpful if
your interested in using a gradient method to optimize some of the paramters
of the array
"""

def pick_numbers(node):
	start = []; lower = []; upper =[];
	for child in node.children():	
		s, l, u = pick_numbers(child)
		start = start + s
		lower = lower + l
		upper = upper + u
	#for now only works with float_genes	
	if hasattr(node,'optimize') and node.optimize == 1: 	
		s = node._value
		l,u = node.bounds
		start = start + [s]
		lower = lower + [l]
		upper = upper + [u]
	else:
		print 'no opt:', node.__class__		
	return start, lower, upper

def put_numbers(node,vals, index = 0):
	for child in node.children():	
		index = put_numbers(child,vals,index)
	if hasattr(node,'optimize') and node.optimize == 1: 	
		s = node._value = vals[index]
		index = index + 1
	return index

"""
Grab the numerical nodes that need to be optimized so that you can directly
manipulate them
"""
def pick_optimize_nodes(node):
	nodes = [];
	for child in node.children():	
		nodes = nodes + pick_optimize_nodes(child)
	#for now only works with float_genes	
	if hasattr(node,'optimize') and node.optimize == 1: 	
		nodes = nodes + [node]
	return nodes