1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
""" Class for interpolating values
!! Need to find argument for keeping initialize. If it isn't
!! found, get rid of it!
"""
__all__ = ['interp1d']
from scipy_base import *
from scipy_base.fastumath import *
import fitpack
# The following are cluges to fix brain-deadness of take and
# sometrue when dealing with 0 dimensional arrays.
# Shouldn't they go to scipy_base??
_take = take
def take(a,indices,axis=0):
x = asarray(a); y = asarray(indices)
if shape(x) == (): x = x.flat
if shape(y) == (): y = y.flat
return _take(x,y,axis)
_sometrue = sometrue
def sometrue(a,axis=0):
x = asarray(a)
if shape(x) == (): x = x.flat
return _sometrue(x)
def reduce_sometrue(a):
all = a
while len(shape(all)) > 1:
all = sometrue(all)
return all
class interp2d:
def __init__(self,x,y,z,kind='linear',
copy=1,bounds_error=0,fill_value=None):
"""
Input:
x,y - 1-d arrays defining 2-d grid (or 2-d meshgrid arrays)
z - 2-d array of grid values
kind - interpolation type ('nearest', 'linear', 'cubic', 'spline')
copy - if true then data is copied into class, otherwise only a
reference is held.
bounds_error - if true, then when out_of_bounds occurs, an error is
raised otherwise, the output is filled with
fill_value.
fill_value - if None, then NaN, otherwise the value to fill in
outside defined region.
"""
self.x = atleast_1d(x).copy()
self.y = atleast_1d(y).copy()
if rank(self.x) > 2 or rank(self.y) > 2:
raise ValueError, "One of the input arrays is not 1-d or 2-d."
if rank(self.x) == 2:
self.x = self.x[:,0]
if rank(self.y) == 2:
self.y = self.y[0]
self.z = array(z,copy=1)
if rank(z) != 2:
raise ValueError, "Grid values is not a 2-d array."
def __call__(self,x,y,dx=0,dy=0):
"""
Input:
x,y - 1-d arrays defining points to interpolate.
dx,dy - order of partial derivatives in x and y, respectively.
0<=dx<kx, 0<=dy<ky
Output:
z - 2-d array of interpolated values
"""
x = atleast_1d(x)
y = atleast_1d(y)
z,ier=fitpack._fitpack._bispev(*(self.tck+[x,y,dx,dy]))
if ier==10: raise ValueError,"Invalid input data"
if ier: raise TypeError,"An error occurred"
z.shape=len(x),len(y)
z = transpose(z)
if len(z)==1: z = z[0]
return array(z)
class interp1d:
interp_axis = -1 # used to set which is default interpolation
# axis. DO NOT CHANGE OR CODE WILL BREAK.
def __init__(self,x,y,kind='linear',axis = -1,
copy = 1,bounds_error=1, fill_value=None):
"""Initialize a 1d linear interpolation class
Description:
x and y are arrays of values used to approximate some function f:
y = f(x)
This class returns a function whose call method uses linear
interpolation to find the value of new points.
Inputs:
x -- a 1d array of monotonically increasing real values.
x cannot include duplicate values. (otherwise f is
overspecified)
y -- an nd array of real values. y's length along the
interpolation axis must be equal to the length
of x.
kind -- specify the kind of interpolation: 'nearest', 'linear',
'cubic', or 'spline'
axis -- specifies the axis of y along which to
interpolate. Interpolation defaults to the last
axis of y. (default: -1)
copy -- If 1, the class makes internal copies of x and y.
If 0, references to x and y are used. The default
is to copy. (default: 1)
bounds_error -- If 1, an error is thrown any time interpolation
is attempted on a value outside of the range
of x (where extrapolation is necessary).
If 0, out of bounds values are assigned the
NaN (#INF) value. By default, an error is
raised, although this is prone to change.
(default: 1)
"""
self.axis = axis
self.copy = copy
self.bounds_error = bounds_error
if fill_value is None:
self.fill_value = array(0.0) / array(0.0)
else:
self.fill_value = fill_value
if kind != 'linear':
raise NotImplementedError, "Only linear supported for now. Use fitpack routines for other types."
# Check that both x and y are at least 1 dimensional.
if len(shape(x)) == 0 or len(shape(y)) == 0:
raise ValueError, "x and y arrays must have at least one dimension."
# make a "view" of the y array that is rotated to the
# interpolation axis.
oriented_x = x
oriented_y = swapaxes(y,self.interp_axis,axis)
interp_axis = self.interp_axis
len_x,len_y = shape(oriented_x)[interp_axis], shape(oriented_y)[interp_axis]
if len_x != len_y:
raise ValueError, "x and y arrays must be equal in length along "\
"interpolation axis."
if len_x < 2 or len_y < 2:
raise ValueError, "x and y arrays must have more than 1 entry"
self.x = array(oriented_x,copy=self.copy)
self.y = array(oriented_y,copy=self.copy)
def __call__(self,x_new):
"""Find linearly interpolated y_new = <name>(x_new).
Inputs:
x_new -- New independent variables.
Outputs:
y_new -- Linearly interpolated values corresponding to x_new.
"""
# 1. Handle values in x_new that are outside of x. Throw error,
# or return a list of mask array indicating the outofbounds values.
# The behavior is set by the bounds_error variable.
x_new = atleast_1d(x_new)
out_of_bounds = self._check_bounds(x_new)
# 2. Find where in the orignal data, the values to interpolate
# would be inserted.
# Note: If x_new[n] = x[m], then m is returned by searchsorted.
x_new_indices = searchsorted(self.x,x_new)
# 3. Clip x_new_indices so that they are within the range of
# self.x indices and at least 1. Removes mis-interpolation
# of x_new[n] = x[0]
x_new_indices = clip(x_new_indices,1,len(self.x)-1).astype(Int)
# 4. Calculate the slope of regions that each x_new value falls in.
lo = x_new_indices - 1; hi = x_new_indices
# !! take() should default to the last axis (IMHO) and remove
# !! the extra argument.
x_lo = take(self.x,lo,axis=self.interp_axis)
x_hi = take(self.x,hi,axis=self.interp_axis);
y_lo = take(self.y,lo,axis=self.interp_axis)
y_hi = take(self.y,hi,axis=self.interp_axis);
slope = (y_hi-y_lo)/(x_hi-x_lo)
# 5. Calculate the actual value for each entry in x_new.
y_new = slope*(x_new-x_lo) + y_lo
# 6. Fill any values that were out of bounds with NaN
# !! Need to think about how to do this efficiently for
# !! mutli-dimensional Cases.
yshape = y_new.shape
y_new = y_new.flat
new_shape = list(yshape)
new_shape[self.interp_axis] = 1
sec_shape = [1]*len(new_shape)
sec_shape[self.interp_axis] = len(out_of_bounds)
out_of_bounds.shape = sec_shape
new_out = ones(new_shape)*out_of_bounds
putmask(y_new, new_out.flat, self.fill_value)
y_new.shape = yshape
# Rotate the values of y_new back so that they coorespond to the
# correct x_new values.
result = swapaxes(y_new,self.interp_axis,self.axis)
try:
len(x_new)
return result
except TypeError:
return result[0]
return result
def _check_bounds(self,x_new):
# If self.bounds_error = 1, we raise an error if any x_new values
# fall outside the range of x. Otherwise, we return an array indicating
# which values are outside the boundary region.
# !! Needs some work for multi-dimensional x !!
below_bounds = less(x_new,self.x[0])
above_bounds = greater(x_new,self.x[-1])
# Note: sometrue has been redefined to handle length 0 arrays
# !! Could provide more information about which values are out of bounds
if self.bounds_error and sometrue(below_bounds):
raise ValueError, " A value in x_new is below the"\
" interpolation range."
if self.bounds_error and sometrue(above_bounds):
raise ValueError, " A value in x_new is above the"\
" interpolation range."
# !! Should we emit a warning if some values are out of bounds.
# !! matlab does not.
out_of_bounds = logical_or(below_bounds,above_bounds)
return out_of_bounds
def model_error(self,x_new,y_new):
# How well do x_new,yy points fit the model?
# Return an array of error values.
pass
#assumes module test_xxx is in python path
#def test():
# test_module = 'test_' + __name__ # __name__ is name of this module
# test_string = 'import %s;reload(%s);%s.test()' % ((test_module,)*3)
# exec(test_string)
#if __name__ == '__main__':
# test()
|