1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
|
/* numpyio.c -- Version 0.9.9
*
* Author: Travis E. Oliphant
* Date : March 1999
*
* This file is a module for python that defines basically two functions for
* reading from and writing to a binary file. It also has some functions
* for byteswapping data and packing and unpacking bits.
*
* The data goes into a NumPy array object (multiarray)
*
* It is basically an implemetation of read and write with the data
* going directly into a NumPy array
*
* Permission is granted to use this program however you see fit, but I give
* no guarantees as to its usefulness or reliability. You assume full
* responsibility for using this program.
*
* Thanks to Michael A. Miller <miller5@uiuc.edu>
* whose TableIO packages helped me learn how
* to write an extension package. I've adapted his Makefile as well.
*/
#include "Python.h" /* Python header files */
#include "Numeric/arrayobject.h"
/* #include <math.h> */
#include <stdio.h>
void rbo(char *, int, int);
void packbits(char *, int, char *, int, int);
void unpackbits(char *, int, char *, int, int, int);
int is_little_endian(void);
static PyObject *ErrorObject; /* locally-raised exception */
#define PYERR(message) do {PyErr_SetString(PyExc_ValueError, message); goto fail;} while(0)
#define DATA(arr) ((arr)->data)
#define DIMS(arr) ((arr)->dimensions)
#define STRIDES(arr) ((arr)->strides)
#define ELSIZE(arr) ((arr)->descr->elsize)
#define OBJECTTYPE(arr) ((arr)->descr->type_num)
#define BASEOBJ(arr) ((PyArrayObject *)((arr)->base))
#define RANK(arr) ((arr)->nd)
#define ISCONTIGUOUS(m) ((m)->flags & CONTIGUOUS)
#define MIN(a,b) (((a) > (b)) ? (b) : (a))
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define PYSETERROR(message) \
{ PyErr_SetString(ErrorObject, message); goto fail; }
#define INCREMENT(ret_ind, nd, max_ind) \
{ \
int k; \
k = (nd) - 1; \
if (++(ret_ind)[k] >= (max_ind)[k]) { \
while (k >= 0 && ((ret_ind)[k] >= (max_ind)[k]-1)) \
(ret_ind)[k--] = 0; \
if (k >= 0) (ret_ind)[k]++; \
else (ret_ind)[0] = (max_ind)[0]; \
} \
}
#define CALCINDEX(indx, nd_index, strides, ndim) \
{ \
int i; \
\
indx = 0; \
for (i=0; i < (ndim); i++) \
indx += nd_index[i]*strides[i]; \
}
static PyObject *
numpyio_fromfile(PyObject *self, PyObject *args) /* args: number of bytes and type */
{
PyObject *file;
PyArrayObject *arr=NULL;
PyArray_Descr *indescr=NULL;
void *ibuff=NULL;
int myelsize;
int ibuff_cleared = 1;
long n,nread;
char read_type;
FILE *fp;
char dobyteswap = 0;
int swap_factor;
char out_type = 124; /* set to unused value */
if (!PyArg_ParseTuple( args, "Olc|cb" , &file, &n, &read_type, &out_type, &dobyteswap ))
return NULL;
if (out_type == 124)
out_type = read_type;
fp = PyFile_AsFile(file);
if (fp == NULL) {
PYSETERROR("First argument must be an open file");
}
if (n <= 0) {
PYSETERROR("Second argument (number of bytes to read) must be positive.");
}
/* Make a 1-D NumPy array of type read_type with n elements */
if ((arr = (PyArrayObject *)PyArray_FromDims(1,(int*)&n,out_type)) == NULL)
return NULL;
/* Read the data into the array from the file */
if (out_type == read_type) {
ibuff = arr -> data;
myelsize = arr -> descr -> elsize;
}
else { /* Alocate a storage buffer for data read in */
indescr = PyArray_DescrFromType((int ) read_type);
if (indescr == NULL) goto fail;
myelsize = indescr -> elsize;
ibuff = malloc(myelsize*n);
if (ibuff == NULL)
PYSETERROR("Could not allocate memory for type casting")
ibuff_cleared = 0;
}
nread = fread(ibuff,myelsize,n,fp);
if (ferror(fp)) {
clearerr(fp);
PYSETERROR("There was an error reading from the file");
}
/* Check to see correct number of bytes were read. If not, then
resize the array to the number of bytes actually read in.
*/
if (nread < n) {
fprintf(stderr,"Warning: %ld bytes requested, %ld bytes read.\n", n, nread);
arr->dimensions[0] = nread;
arr->data = realloc(arr->data,arr->descr->elsize*nread);
}
if (dobyteswap) {
swap_factor = ((read_type=='F' || read_type=='D') ? 2 : 1);
rbo(ibuff,myelsize/swap_factor,nread*swap_factor);
}
if (out_type != read_type) { /* We need to type_cast it */
(indescr->cast[arr->descr->type_num])(ibuff, 1, arr->data, 1, nread );
free(ibuff);
ibuff_cleared = 1;
}
return PyArray_Return(arr);
fail:
if (!ibuff_cleared) free(ibuff);
Py_XDECREF(arr);
return NULL;
}
static int write_buffered_output(FILE *fp, PyArrayObject *arr, PyArray_Descr* outdescr, char *buffer, int buffer_size, int bswap) {
/* INITIALIZE N-D index */
/* Loop over the N-D index filling the buffer with the data in arr
(indexed correctly using strides)
Each time dimension subdim is about to roll
write the buffer to disk and fill it again. */
char *buff_ptr, *output_ptr;
int nwrite, *nd_index, indx;
int buffer_size_bytes, elsize;
buff_ptr = buffer;
nd_index = (int *)calloc(arr->nd,sizeof(int));
if (NULL == nd_index) {
PyErr_SetString(ErrorObject,"Could not allocate memory for index array.");
return -1;
}
buffer_size_bytes = buffer_size * arr->descr->elsize;
while(nd_index[0] != arr->dimensions[0]) {
CALCINDEX(indx,nd_index,arr->strides,arr->nd);
memcpy(buff_ptr, arr->data+indx, arr->descr->elsize);
buff_ptr += arr->descr->elsize;
INCREMENT(nd_index,arr->nd,arr->dimensions);
if ((buff_ptr - buffer) >= buffer_size_bytes) {
buff_ptr = buffer;
if (outdescr->type != arr->descr->type) { /* Cast to new type before writing */
output_ptr = buffer + buffer_size_bytes;
(arr->descr->cast[outdescr->type_num])(buffer, 1, output_ptr, 1, buffer_size);
elsize = outdescr->elsize;
}
else {
output_ptr = buffer;
elsize = arr->descr->elsize;
}
if (bswap) {
rbo((char *)output_ptr, elsize, buffer_size);
}
nwrite = fwrite(output_ptr, elsize, buffer_size, fp);
if (ferror(fp)) {
clearerr(fp);
PyErr_SetString(ErrorObject,"There was an error writing to the file");
return -1;
}
if (nwrite < buffer_size) {
fprintf(stderr,"Warning: %d of %d specified bytes written.\n",nwrite, buffer_size);
}
}
}
return 0;
}
static PyObject *
numpyio_tofile(PyObject *self, PyObject *args) /* args: number of bytes and type */
{
PyObject *file;
PyArrayObject *arr = NULL;
PyObject *obj;
PyArray_Descr *outdescr;
void *obuff = NULL;
long n, k, nwrite, maxN, elsize_bytes;
int myelsize, buffer_size;
FILE *fp;
char *buffer = NULL;
char dobyteswap = 0;
int swap_factor;
char ownalloc = 0;
char write_type = 124;
if (!PyArg_ParseTuple( args, "OlO|cb" , &file, &n, &obj, &write_type, &dobyteswap))
return NULL;
fp = PyFile_AsFile(file);
if (fp == NULL) {
PYSETERROR("First argument must be an open file");
}
if (!PyArray_Check(obj)) {
PYSETERROR("Third argument must be a NumPy array.");
}
maxN = PyArray_SIZE((PyArrayObject *)obj);
if (n > maxN)
PYSETERROR("The NumPy array does not have that many elements.");
if (((PyArrayObject *)obj)->descr->type_num == PyArray_OBJECT)
PYSETERROR("Cannot write an object array.");
if (!PyArray_ISCONTIGUOUS((PyArrayObject *)obj)) {
arr = (PyArrayObject *)PyArray_CopyFromObject(obj,((PyArrayObject *)obj) -> descr -> type_num, 0, 0);
if (NULL == arr) { /* Memory allocation failed
Write out buffered data using strides info */
arr = (PyArrayObject *)obj;
Py_INCREF(arr);
if (write_type == 124)
write_type = arr -> descr -> type;
if (write_type != arr -> descr -> type) {
outdescr = PyArray_DescrFromType((int) write_type);
if (outdescr == NULL) goto fail;
elsize_bytes = (outdescr->elsize + arr->descr->elsize); /* allocate space for buffer and casted buffer */
}
else {
outdescr = arr->descr;
elsize_bytes = (arr->descr->elsize);
}
k = 0;
do {
k++;
buffer_size = _PyArray_multiply_list(arr->dimensions + k, arr->nd - k);
buffer = (char *)malloc(elsize_bytes*buffer_size);
}
while ((NULL == buffer) && (k < arr->nd - 1));
if (NULL == buffer) /* Still NULL no size was small enough */
PYSETERROR("Could not allocate memory for any attempted output buffer size.");
/* Write a buffered output */
if (write_buffered_output(fp, (PyArrayObject *)obj, outdescr, buffer, buffer_size, dobyteswap) < 0) {
free(buffer);
goto fail;
}
free(buffer);
Py_DECREF(arr);
Py_INCREF(Py_None);
return Py_None;
}
}
else {
arr = (PyArrayObject *)obj;
Py_INCREF(arr);
}
/* Write the array to file (low-level data transfer) */
if (n > 0) {
if (write_type == 124) /* Wasn't specified: use input type */
write_type = arr -> descr -> type;
if (write_type == arr -> descr -> type) { /* point output buffer to data */
obuff = arr -> data;
myelsize = arr -> descr -> elsize;
}
else {
if ((outdescr = PyArray_DescrFromType((int ) write_type)) == NULL) goto fail;
myelsize = outdescr -> elsize;
obuff = malloc(n*myelsize);
if (obuff == NULL)
PYSETERROR("Could not allocate memory for type-casting");
ownalloc = 1;
(arr->descr->cast[(int)outdescr->type_num])(arr->data,1,obuff,1,n);
}
/* Write the data from the array to the file */
if (dobyteswap) {
swap_factor = ((write_type=='F' || write_type=='D') ? 2 : 1);
rbo((char *)obuff,myelsize/swap_factor,n*swap_factor);
}
nwrite = fwrite(obuff,myelsize,n,fp);
if (dobyteswap) { /* Swap data in memory back if allocated obuff */
if (write_type == arr -> descr -> type) /* otherwise we changed obuff only */
rbo(arr->data,arr->descr->elsize/swap_factor,PyArray_SIZE(arr)*swap_factor);
}
if (ferror(fp)) {
clearerr(fp);
PYSETERROR("There was an error writing to the file");
}
if (nwrite < n) {
fprintf(stderr,"Warning: %ld of %ld specified bytes written.\n",nwrite,n);
}
}
if (ownalloc == 1) {
free(obuff);
}
Py_DECREF(arr);
Py_INCREF(Py_None);
return Py_None;
fail:
if (ownalloc == 1) free(obuff);
Py_XDECREF(arr);
return NULL;
}
static PyObject *
numpyio_byteswap(PyObject *self, PyObject *args) /* args: number of bytes and type */
{
PyArrayObject *arr = NULL;
PyObject *obj;
int type;
if (!PyArg_ParseTuple( args, "O" , &obj))
return NULL;
type = PyArray_ObjectType(obj,0);
if ((arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,type,0,0)) == NULL)
return NULL;
rbo(arr->data,arr->descr->elsize,PyArray_SIZE(arr));
return PyArray_Return(arr);
}
static PyObject *
numpyio_pack(PyObject *self, PyObject *args) /* args: in */
{
PyArrayObject *arr = NULL, *out = NULL;
PyObject *obj;
int els_per_slice;
int out_size;
int type;
if (!PyArg_ParseTuple( args, "O" , &obj))
return NULL;
type = PyArray_ObjectType(obj,0);
if ((arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,type,0,0)) == NULL)
return NULL;
if (arr->descr->type_num > PyArray_LONG)
PYSETERROR("Expecting an input array of integer type (no floats).");
/* Get size information from input array and make a 1-D output array of bytes */
els_per_slice = arr->dimensions[arr->nd - 1];
if (arr->nd > 1)
els_per_slice = els_per_slice * arr->dimensions[arr->nd - 2];
out_size = (PyArray_SIZE(arr)/els_per_slice)*ceil ( (float) els_per_slice / 8);
if ((out = (PyArrayObject *)PyArray_FromDims(1,&out_size,PyArray_UBYTE))==NULL) {
goto fail;
}
packbits(arr->data,arr->descr->elsize,out->data,PyArray_SIZE(arr),els_per_slice);
Py_DECREF(arr);
return PyArray_Return(out);
fail:
Py_XDECREF(arr);
return NULL;
}
static PyObject *
numpyio_unpack(PyObject *self, PyObject *args) /* args: in, out_type */
{
PyArrayObject *arr = NULL, *out=NULL;
PyObject *obj;
int els_per_slice, arrsize;
int out_size, type;
char out_type = 'b';
if (!PyArg_ParseTuple( args, "Oi|c" , &obj, &els_per_slice, &out_type))
return NULL;
if (els_per_slice < 1)
PYSETERROR("Second argument is elements_per_slice and it must be >= 1.");
type = PyArray_ObjectType(obj,0);
if ((arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj,type,0,0)) == NULL)
return NULL;
arrsize = PyArray_SIZE(arr);
if ((arrsize % (int) (ceil( (float) els_per_slice / 8))) != 0)
PYSETERROR("That cannot be the number of elements per slice for this array size.");
if (arr->descr->type_num > PyArray_LONG)
PYSETERROR("Can only unpack arrays that are of integer type.");
/* Make an 1-D output array of type out_type */
out_size = els_per_slice * arrsize / ceil( (float) els_per_slice / 8);
if ((out = (PyArrayObject *)PyArray_FromDims(1,&out_size,out_type))==NULL)
goto fail;
if (out->descr->type_num > PyArray_LONG) {
PYSETERROR("Can only unpack bits into integer type.");
}
unpackbits(arr->data,arr->descr->elsize,out->data,out->descr->elsize,out_size,els_per_slice);
Py_DECREF(arr);
return PyArray_Return(out);
fail:
Py_XDECREF(out);
Py_XDECREF(arr);
return NULL;
}
static char fread_doc[] =
"g = numpyio.fread( fid, Num, read_type { mem_type, byteswap})\n\n"
" fid = open file pointer object (i.e. from fid = open('filename') )\n"
" Num = number of elements to read of type read_type\n"
" read_type = a character in 'cb1silfdFD' (PyArray types)\n"
" describing how to interpret bytes on disk.\nOPTIONAL\n"
" mem_type = a character (PyArray type) describing what kind of\n"
" PyArray to return in g. Default = read_type\n"
" byteswap = 0 for no byteswapping or a 1 to byteswap (to handle\n"
" different endianness). Default = 0.";
static char fwrite_doc[] =
"numpyio.fwrite( fid, Num, myarray { write_type, byteswap} )\n\n"
" fid = open file stream\n"
" Num = number of elements to write\n"
" myarray = NumPy array holding the data to write (will be\n"
" written as if ravel(myarray) was passed)\nOPTIONAL\n"
" write_type = character ('cb1silfdFD') describing how to write the\n"
" data (what datatype to use) Default = type of\n"
" myarray.\n"
" byteswap = 0 or 1 to determine if byteswapping occurs on write.\n"
" Default = 0.";
static char bswap_doc[] =
" out = numpyio.bswap(myarray)\n\n"
" myarray = an array whose elements you want to byteswap.\n"
" out = a reference to byteswapped myarray.\n\n"
" This does an inplace byte-swap so that myarray is changed in\n"
" memory.";
static char packbits_doc[] =
"out = numpyio.packbits(myarray)\n\n"
" myarray = an array whose (assumed binary) elements you want to\n"
" pack into bits (must be of integer type, 'cb1sl')\n\n"
" This routine packs the elements of a binary-valued dataset into a\n"
" 1-D NumPy array of type PyArray_UBYTE ('b') whose bits correspond to\n"
" the logical (0 or nonzero) value of the input elements. \n\n"
" If myarray has more dimensions than 2 it packs each slice (rows*columns)\n"
" separately. The number of elements per slice (rows*columns) is\n"
" important to know to be able to unpack the data later.\n\n"
" Example:\n"
" >>> a = array([[[1,0,1],\n"
" ... [0,1,0]],\n"
" ... [[1,1,0],\n"
" ... [0,0,1]]])\n"
" >>> b = numpyio.packbits(a)\n"
" >>> b\n"
" array([168, 196], 'b')\n\n"
" Note that 168 = 128 + 32 + 8\n"
" 196 = 128 + 64 + 4";
static char unpackbits_doc[] =
"out = numpyio.unpackbits(myarray, elements_per_slice {, out_type} )\n\n"
" myarray = Array of integer type ('cb1sl') whose least\n"
" significant byte is a bit-field for the\n"
" resulting output array.\n\n"
" elements_per_slice = Necessary for interpretation of myarray.\n"
" This is how many elements in the\n "
" rows*columns of original packed structure.\n\nOPTIONAL\n"
" out_type = The type of output array to populate with 1's\n"
" and 0's. Must be an integer type.\n\n\nThe output array\n"
" will be a 1-D array of 1's and zero's";
#define BUFSIZE 256
/* Convert a Python string object to a complex number */
static int convert_from_object(PyObject *obj, Py_complex *cnum)
{
PyObject *res=NULL, *elobj=NULL;
PyObject *newstr=NULL, *finalobj=NULL, *valobj=NULL;
char strbuffer[2*BUFSIZE];
char *xptr, *elptr;
char *newstrbuff, thischar;
char buffer[BUFSIZE];
char validnum[] = "0123456789.eE+-";
int validlen = 15;
int inegflag = 1;
int rnegflag = 1;
int n, k, m, i, elN, size, state, count;
double val;
if (!PyString_Check(obj)) return -1;
/* strip string */
newstr = PyObject_CallMethod(obj, "strip", NULL);
if (newstr == NULL) goto fail;
/* Replace any 'e+' or 'e-' */
size = PyString_GET_SIZE(newstr);
newstrbuff = PyString_AsString(newstr);
if (newstrbuff == NULL) goto fail;
if (size > 2*BUFSIZE) PYERR("String too large.");
state = 0;
count = 0;
for (k=0; k<size; k++) {
thischar = newstrbuff[k];
if (state == 1) {
if (thischar == '+') {
thischar = '\254';
}
else if (thischar == '-') {
thischar = '\253';
}
}
if ((thischar == 'e') || (thischar == 'E')) state = 1;
else state = 0;
strbuffer[count] = thischar;
count++;
}
Py_DECREF(newstr);
newstr = PyString_FromStringAndSize(strbuffer, count);
if (newstr == NULL) goto fail;
xptr = strbuffer;
/* Split the string into two substrings first on a ',' then on a '+'
or '-' */
res = PyObject_CallMethod(newstr, "split", "s", ",");
if (res == NULL) goto fail;
if (PySequence_Size(res) < 2) {
Py_DECREF(res);
res = PyObject_CallMethod(newstr, "split", "s", "+");
if (res == NULL) goto fail;
}
if (PySequence_Size(res) < 2) {
if ((strbuffer[0] == '(') || (strbuffer[0] == '[') ||
(strbuffer[0] == '{')) {
xptr++;
count--;
/* strip leading whitespaces */
while (isspace(*xptr)) {xptr++; count--;}
}
if (xptr[0] == '-') {
rnegflag = -1;
xptr++;
count--;
}
Py_DECREF(newstr);
newstr = PyString_FromStringAndSize(xptr, count);
if (newstr == NULL) goto fail;
Py_DECREF(res);
res = PyObject_CallMethod(newstr, "split", "s", "-");
if (res == NULL) goto fail;
inegflag = -1;
}
size = PySequence_Size(res);
for (k=0; k < MIN(size,2); k++) {
elobj = PySequence_GetItem(res, k);
if (elobj == NULL) goto fail;
elN = PyString_Size(elobj);
if ((elN > BUFSIZE))
PYSETERROR("String too large.");
/* Replace back the + and - and strip away invalid characters */
elptr = PyString_AsString(elobj);
m = 0;
for (n=0; n < elN; n++) {
thischar = elptr[n];
if (thischar == '\254')
buffer[m++] = '+';
else if (thischar == '\253')
buffer[m++] = '-';
else {
for (i=0; i< validlen; i++) {
if (thischar == validnum[i]) break;
}
if (i < validlen) buffer[m++] = thischar;
}
}
finalobj = PyString_FromStringAndSize(buffer, m);
if (finalobj == NULL) goto fail;
valobj = PyFloat_FromString(finalobj, NULL); /* Try to make a float */
if (valobj == NULL) goto fail;
val = PyFloat_AsDouble(valobj);
if (PyErr_Occurred()) goto fail;
Py_DECREF(finalobj);
Py_DECREF(valobj);
Py_DECREF(elobj);
if (k==0) {
cnum->real = val*rnegflag;
}
else {
cnum->imag = val*inegflag;
}
}
Py_DECREF(newstr);
Py_DECREF(res);
return 0;
fail:
Py_XDECREF(res);
Py_XDECREF(elobj);
Py_XDECREF(newstr);
Py_XDECREF(finalobj);
Py_XDECREF(valobj);
return -1;
}
static int PyTypeFromChar(char ctype)
{
switch(ctype) {
case 'c': return PyArray_CHAR;
case 'b': return PyArray_UBYTE;
case '1': return PyArray_SBYTE;
case 's': return PyArray_SHORT;
case 'i': return PyArray_INT;
#ifdef PyArray_UNSIGNED_TYPES
case 'u': return PyArray_UINT;
case 'w': return PyArray_USHORT;
#endif
case 'l': return PyArray_LONG;
case 'f': return PyArray_FLOAT;
case 'd': return PyArray_DOUBLE;
case 'F': return PyArray_CFLOAT;
case 'D': return PyArray_CDOUBLE;
case 'O': return PyArray_OBJECT;
}
return PyArray_NOTYPE;
}
static PyObject *
numpyio_convert_objects(PyObject *self, PyObject *args)
{
PyObject *obj = NULL, *missing_val = NULL;
PyArrayObject *arr = NULL, *out=NULL;
PyArrayObject *missing_arr = NULL;
PyArray_Descr *descr;
PyObject *builtins, *dict;
char out_type;
int int_type, i, err;
char *outptr;
PyObject **arrptr;
PyObject *numobj=NULL;
PyObject *comp_obj;
Py_complex numc;
PyArray_VectorUnaryFunc *funcptr;
if (!PyArg_ParseTuple( args, "Oc|O" , &obj, &out_type, &missing_val))
return NULL;
if (missing_val == NULL) {
missing_val = PyInt_FromLong(0);
}
else {
Py_INCREF(missing_val); /* Increment missing_val for later DECREF */
}
int_type = PyTypeFromChar(out_type);
if ((int_type == PyArray_NOTYPE) || (int_type == PyArray_OBJECT))
PYERR("Invalid output type.");
missing_arr = (PyArrayObject *)PyArray_ContiguousFromObject(missing_val,
int_type, 0, 0);
Py_DECREF(missing_val);
missing_val = NULL; /* So later later failures don't decrement it */
if ((missing_arr == NULL)) goto fail;
if ((RANK(missing_arr) > 0)) PYERR("Missing value must be as scalar");
arr = (PyArrayObject *)PyArray_ContiguousFromObject(obj, PyArray_OBJECT,
0, 0);
if (arr == NULL) goto fail;
out = (PyArrayObject *)PyArray_FromDims(RANK(arr), DIMS(arr), int_type);
if (out == NULL) goto fail;
/* Get the builtin_functions from the builtin module */
builtins = PyImport_AddModule("__builtin__");
if (builtins == NULL) goto fail;
dict = PyModule_GetDict(builtins);
comp_obj = PyDict_GetItemString(dict, "complex");
if (comp_obj == NULL) goto fail;
/* get_complex = PyDict_GetItemString(dict, "complex");
get_float = PyDict_GetItemString(dict, "float");
get_int = PyDict_GetItemString(dict, "int");
if ((get_complex == NULL) || (get_float == NULL) || (get_int == NULL) ) goto fail;
*/
/*
get_complex_self = PyCFunction_GetSelf(PyDict_GetItemString(dict, "complex"));
get_float_self = PyCFunction_GetSelf(PyDict_GetItemString(dict, "float"));
get_int_self = PyCFunction_GetSelf(PyDict_GetItemString(dict, "int"));
*/
/* Loop through arr and convert each element and place in out */
i = PyArray_Size((PyObject *)arr);
arrptr = ((PyObject **)DATA(arr)) - 1;
outptr = (DATA(out)) - ELSIZE(out);
descr = PyArray_DescrFromType(PyArray_CDOUBLE);
funcptr = descr->cast[int_type];
while (i--) {
outptr += ELSIZE(out);
arrptr += 1;
numc.real = 0;
numc.imag = 0;
numobj = PyObject_CallFunction(comp_obj, "O", *arrptr);
if (numobj != NULL) {
numc = PyComplex_AsCComplex(numobj);
Py_DECREF(numobj);
}
if (PyErr_Occurred()) { /* Use our own homegrown converter... */
PyErr_Clear();
err = convert_from_object(*arrptr, &numc);
if (PyErr_Occurred()) PyErr_Clear();
if (err < 0) { /* Nothing works fill with missing value... */
memcpy(outptr, DATA(missing_arr), ELSIZE(out));
}
}
/* Place numc into the array */
funcptr((void *)&(numc.real), 1, (void *)outptr, 1, 1);
}
Py_DECREF(missing_arr);
Py_DECREF(arr);
return PyArray_Return(out);
fail:
Py_XDECREF(out);
Py_XDECREF(arr);
Py_XDECREF(missing_arr);
Py_XDECREF(missing_val);
return NULL;
}
static char convert_objects_doc[] =
"convert_objectarray(myarray, arraytype{, missing_value} ) -> out \n\n"
" myarray = Sequence of strings.\n"
" arraytype = Type of output array.\n"
" missing_value = Value to insert when conversion fails.";
/* *************************************************************************** */
/* Method registration table: name-string -> function-pointer */
static struct PyMethodDef numpyio_methods[] = {
{"fread", numpyio_fromfile, 1, fread_doc},
{"fwrite", numpyio_tofile, 1, fwrite_doc},
{"bswap", numpyio_byteswap, 1, bswap_doc},
{"packbits", numpyio_pack, 1, packbits_doc},
{"unpackbits", numpyio_unpack, 1, unpackbits_doc},
{"convert_objectarray", numpyio_convert_objects, 1, convert_objects_doc},
{NULL, NULL}
};
DL_EXPORT(void) initnumpyio(void)
{
PyObject *m, *d;
import_array(); /* allows multiarray to be a shared library (I think) */
/* Should be defined in arrayobject.h */
/* create the module and add the functions */
m = Py_InitModule("numpyio", numpyio_methods); /* registration hook */
/* add symbolic constants to the module */
d = PyModule_GetDict(m);
ErrorObject = Py_BuildValue("s", "numpyio.error"); /* export exception */
PyDict_SetItemString(d, "error", ErrorObject); /* add more if need */
}
/**********************************************************/
/* */
/* SYNOPSIS: rbo(data, bpe, nel) ; */
/* where: */
/* nel..... number of array elements */
/* data.... pointer to the first byte in the */
/* array */
/* bpe..... bytes per array element */
/* */
/* PURPOSE: convert data from little to big endian (and */
/* visa-versa) */
/* */
/**********************************************************/
void rbo(char * data, int bpe, int nel)
{
int nswaps, i,j; /* number of swaps to make per element */
char tmp; /* temporary storage for swapping */
long int p1, p2; /* indexes for elements to be swapped */
nswaps = bpe / 2; /* divide element size by two */
if (nswaps == 0) return; /* return if it is a byte array */
p1 = 0;
for ( i=0; i<nel; i++) {
p1 = i*bpe;
p2 = p1 + bpe - 1;
for (j=0; j<nswaps; j++) {
tmp = data[p1];
data[p1] = data[p2];
data[p2] = tmp;
p1++;
p2--;
}
}
return;
}
/* PACKBITS
This function packs binary (0 or 1) 1-bit per pixel images
into bytes for writing to disk.
*/
void packbits(
char In[],
int element_size, /* in bytes */
char Out[],
int total_elements,
int els_per_slice
)
{
char build;
int i,index,slice,slices,out_bytes;
int maxi, remain, nonzero, j;
char *outptr,*inptr;
outptr = Out; /* pointer to output buffer */
inptr = In; /* pointer to input buffer */
slices = total_elements/els_per_slice;
out_bytes = ceil( (float) els_per_slice / 8); /* number of bytes in each slice */
remain = els_per_slice % 8; /* uneven bits */
if (remain == 0) remain = 8; /* */
/* printf("Start: %d %d %d %d %d\n",inM,MN,slices,out_bytes,remain);
*/
for (slice = 0; slice < slices; slice++) {
for (index = 0; index < out_bytes; index++) {
build = 0;
maxi = (index != out_bytes - 1 ? 8 : remain);
for (i = 0; i < maxi ; i++) {
build <<= 1; /* shift bits left one bit */
nonzero = 0;
for (j = 0; j < element_size; j++) /* determine if this number is non-zero */
nonzero += (*(inptr++) != 0);
build += (nonzero > 0); /* add to this bit if the input value is non-zero */
}
if (index == out_bytes - 1) build <<= (8-remain);
/* printf("Here: %d %d %d %d\n",build,slice,index,maxi);
*/
*(outptr++) = build;
}
}
return;
}
void unpackbits(
char In[],
int in_element_size,
char Out[],
int element_size,
int total_elements,
int els_per_slice
)
{
unsigned char mask;
int i,index,slice,slices,out_bytes;
int maxi, remain;
char *outptr,*inptr;
outptr = Out;
inptr = In;
if (is_little_endian()) {
fprintf(stderr,"This is a little-endian machine.\n");
}
else {
fprintf(stderr,"This is a big-endian machine.\n");
outptr += (element_size - 1);
inptr += (in_element_size - 1);
}
slices = total_elements / els_per_slice;
out_bytes = ceil( (float) els_per_slice / 8);
remain = els_per_slice % 8;
if (remain == 0) remain = 8;
/* printf("Start: %d %d %d %d %d\n",inM,MN,slices,out_bytes,remain);
*/
for (slice = 0; slice < slices; slice++) {
for (index = 0; index < out_bytes; index++) {
maxi = (index != out_bytes - 1 ? 8 : remain);
mask = 128;
for (i = 0; i < maxi ; i++) {
*outptr = ((mask & (unsigned char)(*inptr)) > 0);
outptr += element_size;
mask >>= 1;
}
/* printf("Here: %d %d %d %d\n",build,slice,index,maxi);
*/
inptr += in_element_size;
}
}
return;
}
int is_little_endian()
{ /* high low */
short testnum = 1; /* If little endian it will be 0x00 0x01 */
/* If big endian it will be 0x01 0x00 */
void *testptr;
char *myptr;
testptr = (void *)(&testnum); /* Assumes address gives low-byte in memory */
myptr = (char*)testptr;
return (*(myptr) == 1);
}
|