1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,stpmin,
+ stpmax)
logical brackt
double precision stx, fx, dx, sty, fy, dy, stp, fp, dp, stpmin,
+ stpmax
c **********
c
c Subroutine dcstep
c
c This subroutine computes a safeguarded step for a search
c procedure and updates an interval that contains a step that
c satisfies a sufficient decrease and a curvature condition.
c
c The parameter stx contains the step with the least function
c value. If brackt is set to .true. then a minimizer has
c been bracketed in an interval with endpoints stx and sty.
c The parameter stp contains the current step.
c The subroutine assumes that if brackt is set to .true. then
c
c min(stx,sty) < stp < max(stx,sty),
c
c and that the derivative at stx is negative in the direction
c of the step.
c
c The subroutine statement is
c
c subroutine dcstep(stx,fx,dx,sty,fy,dy,stp,fp,dp,brackt,
c stpmin,stpmax)
c
c where
c
c stx is a double precision variable.
c On entry stx is the best step obtained so far and is an
c endpoint of the interval that contains the minimizer.
c On exit stx is the updated best step.
c
c fx is a double precision variable.
c On entry fx is the function at stx.
c On exit fx is the function at stx.
c
c dx is a double precision variable.
c On entry dx is the derivative of the function at
c stx. The derivative must be negative in the direction of
c the step, that is, dx and stp - stx must have opposite
c signs.
c On exit dx is the derivative of the function at stx.
c
c sty is a double precision variable.
c On entry sty is the second endpoint of the interval that
c contains the minimizer.
c On exit sty is the updated endpoint of the interval that
c contains the minimizer.
c
c fy is a double precision variable.
c On entry fy is the function at sty.
c On exit fy is the function at sty.
c
c dy is a double precision variable.
c On entry dy is the derivative of the function at sty.
c On exit dy is the derivative of the function at the exit sty.
c
c stp is a double precision variable.
c On entry stp is the current step. If brackt is set to .true.
c then on input stp must be between stx and sty.
c On exit stp is a new trial step.
c
c fp is a double precision variable.
c On entry fp is the function at stp
c On exit fp is unchanged.
c
c dp is a double precision variable.
c On entry dp is the the derivative of the function at stp.
c On exit dp is unchanged.
c
c brackt is an logical variable.
c On entry brackt specifies if a minimizer has been bracketed.
c Initially brackt must be set to .false.
c On exit brackt specifies if a minimizer has been bracketed.
c When a minimizer is bracketed brackt is set to .true.
c
c stpmin is a double precision variable.
c On entry stpmin is a lower bound for the step.
c On exit stpmin is unchanged.
c
c stpmax is a double precision variable.
c On entry stpmax is an upper bound for the step.
c On exit stpmax is unchanged.
c
c MINPACK-1 Project. June 1983
c Argonne National Laboratory.
c Jorge J. More' and David J. Thuente.
c
c MINPACK-2 Project. November 1993.
c Argonne National Laboratory and University of Minnesota.
c Brett M. Averick and Jorge J. More'.
c
c **********
double precision zero, p66, two, three
parameter (zero=0.0d0,p66=0.66d0,two=2.0d0,three=3.0d0)
double precision gamma, p, q, r, s, sgnd, stpc, stpf, stpq, theta
sgnd = dp*(dx/abs(dx))
c First case: A higher function value. The minimum is bracketed.
c If the cubic step is closer to stx than the quadratic step, the
c cubic step is taken, otherwise the average of the cubic and
c quadratic steps is taken.
if (fp .gt. fx) then
theta = three*(fx-fp)/(stp-stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2-(dx/s)*(dp/s))
if (stp .lt. stx) gamma = -gamma
p = (gamma-dx) + theta
q = ((gamma-dx)+gamma) + dp
r = p/q
stpc = stx + r*(stp-stx)
stpq = stx + ((dx/((fx-fp)/(stp-stx)+dx))/two)*(stp-stx)
if (abs(stpc-stx) .lt. abs(stpq-stx)) then
stpf = stpc
else
stpf = stpc + (stpq-stpc)/two
end if
brackt = .true.
c Second case: A lower function value and derivatives of opposite
c sign. The minimum is bracketed. If the cubic step is farther from
c stp than the secant step, the cubic step is taken, otherwise the
c secant step is taken.
else if (sgnd .lt. zero) then
theta = three*(fx-fp)/(stp-stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
gamma = s*sqrt((theta/s)**2-(dx/s)*(dp/s))
if (stp .gt. stx) gamma = -gamma
p = (gamma-dp) + theta
q = ((gamma-dp)+gamma) + dx
r = p/q
stpc = stp + r*(stx-stp)
stpq = stp + (dp/(dp-dx))*(stx-stp)
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
end if
brackt = .true.
c Third case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative decreases.
else if (abs(dp) .lt. abs(dx)) then
c The cubic step is computed only if the cubic tends to infinity
c in the direction of the step or if the minimum of the cubic
c is beyond stp. Otherwise the cubic step is defined to be the
c secant step.
theta = three*(fx-fp)/(stp-stx) + dx + dp
s = max(abs(theta),abs(dx),abs(dp))
c The case gamma = 0 only arises if the cubic does not tend
c to infinity in the direction of the step.
gamma = s*sqrt(max(zero,(theta/s)**2-(dx/s)*(dp/s)))
if (stp .gt. stx) gamma = -gamma
p = (gamma-dp) + theta
q = (gamma+(dx-dp)) + gamma
r = p/q
if (r .lt. zero .and. gamma .ne. zero) then
stpc = stp + r*(stx-stp)
else if (stp .gt. stx) then
stpc = stpmax
else
stpc = stpmin
end if
stpq = stp + (dp/(dp-dx))*(stx-stp)
if (brackt) then
c A minimizer has been bracketed. If the cubic step is
c closer to stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .lt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
end if
if (stp .gt. stx) then
stpf = min(stp+p66*(sty-stp),stpf)
else
stpf = max(stp+p66*(sty-stp),stpf)
end if
else
c A minimizer has not been bracketed. If the cubic step is
c farther from stp than the secant step, the cubic step is
c taken, otherwise the secant step is taken.
if (abs(stpc-stp) .gt. abs(stpq-stp)) then
stpf = stpc
else
stpf = stpq
end if
stpf = min(stpmax,stpf)
stpf = max(stpmin,stpf)
end if
c Fourth case: A lower function value, derivatives of the same sign,
c and the magnitude of the derivative does not decrease. If the
c minimum is not bracketed, the step is either stpmin or stpmax,
c otherwise the cubic step is taken.
else
if (brackt) then
theta = three*(fp-fy)/(sty-stp) + dy + dp
s = max(abs(theta),abs(dy),abs(dp))
gamma = s*sqrt((theta/s)**2-(dy/s)*(dp/s))
if (stp .gt. sty) gamma = -gamma
p = (gamma-dp) + theta
q = ((gamma-dp)+gamma) + dy
r = p/q
stpc = stp + r*(sty-stp)
stpf = stpc
else if (stp .gt. stx) then
stpf = stpmax
else
stpf = stpmin
end if
end if
c Update the interval which contains a minimizer.
if (fp .gt. fx) then
sty = stp
fy = fp
dy = dp
else
if (sgnd .lt. zero) then
sty = stx
fy = fx
dy = dx
end if
stx = stp
fx = fp
dx = dp
end if
c Compute the new step.
stp = stpf
end
|