1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
# Functions which need the PIL
from scipy_base import ppimport
import types
import Numeric
from scipy_base import exp, amin, amax, ravel, asarray, cast, arange, \
ones, NewAxis, transpose, mgrid, iscomplexobj, sum, zeros
Image = ppimport('Image')
ImageFilter = ppimport('ImageFilter')
__all__ = ['fromimage','toimage','imsave','imread','bytescale',
'imrotate','imresize','imshow','imfilter','radon']
_UInt8 = Numeric.UnsignedInt8
# Returns a byte-scaled image
def bytescale(data, cmin=None, cmax=None, high=255, low=0):
if data.typecode == _UInt8:
return data
high = high - low
if cmin is None:
cmin = amin(ravel(data))
if cmax is None:
cmax = amax(ravel(data))
scale = high *1.0 / (cmax-cmin or 1)
bytedata = ((data*1.0-cmin)*scale + 0.4999).astype(_UInt8)
return bytedata + cast[_UInt8](low)
def imread(name,flatten=0):
"""Read an image file from a filename.
Optional arguments:
- flatten (0): if true, the image is flattened by calling convert('F') on
the resulting image object. This flattens the color layers into a single
grayscale layer.
"""
im = Image.open(name)
return fromimage(im,flatten=flatten)
def imsave(name, arr):
"""Save an array to an image file.
"""
im = toimage(arr)
im.save(name)
return
def fromimage(im, flatten=0):
"""Takes a PIL image and returns a copy of the image in a Numeric container.
If the image is RGB returns a 3-dimensional array: arr[:,:,n] is each channel
Optional arguments:
- flatten (0): if true, the image is flattened by calling convert('F') on
the image object before extracting the numerical data. This flattens the
color layers into a single grayscale layer. Note that the supplied image
object is NOT modified.
"""
assert Image.isImageType(im), "Not a PIL image."
if flatten:
im = im.convert('F')
mode = im.mode
adjust = 0
if mode == '1':
im = im.convert(mode='L')
mode = 'L'
adjust = 1
str = im.tostring()
type = 'b'
if mode == 'F':
type = 'f'
if mode == 'I':
type = 'i'
arr = Numeric.fromstring(str,type)
shape = list(im.size)
shape.reverse()
if mode == 'P':
arr.shape = shape
if im.palette.rawmode != 'RGB':
print "Warning: Image has invalid palette."
return arr
pal = Numeric.fromstring(im.palette.data,type)
N = len(pal)
pal.shape = (int(N/3.0),3)
return arr, pal
if mode in ['RGB','YCbCr']:
shape += [3]
elif mode in ['CMYK','RGBA']:
shape += [4]
arr.shape = shape
if adjust:
arr = (arr != 0)
return arr
_errstr = "Mode is unknown or incompatible with input array shape."
def toimage(arr,high=255,low=0,cmin=None,cmax=None,pal=None,
mode=None,channel_axis=None):
"""Takes a Numeric array and returns a PIL image. The mode of the
PIL image depends on the array shape, the pal keyword, and the mode
keyword.
For 2-D arrays, if pal is a valid (N,3) byte-array giving the RGB values
(from 0 to 255) then mode='P', otherwise mode='L', unless mode is given
as 'F' or 'I' in which case a float and/or integer array is made
For 3-D arrays, the channel_axis argument tells which dimension of the
array holds the channel data.
For 3-D arrays if one of the dimensions is 3, the mode is 'RGB'
by default or 'YCbCr' if selected.
if the
The Numeric array must be either 2 dimensional or 3 dimensional.
"""
data = asarray(arr)
if iscomplexobj(data):
raise ValueError, "Cannot convert a complex-valued array."
shape = list(data.shape)
valid = len(shape)==2 or ((len(shape)==3) and \
((3 in shape) or (4 in shape)))
assert valid, "Not a suitable array shape for any mode."
if len(shape) == 2:
shape = (shape[1],shape[0]) # columns show up first
if mode == 'F':
image = Image.fromstring(mode,shape,data.astype('f').tostring())
return image
if mode in [None, 'L', 'P']:
bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
image = Image.fromstring('L',shape,bytedata.tostring())
if pal is not None:
image.putpalette(asarray(pal,typecode=_UInt8).tostring())
# Becomes a mode='P' automagically.
elif mode == 'P': # default gray-scale
pal = arange(0,256,1,typecode='b')[:,NewAxis] * \
ones((3,),typecode='b')[NewAxis,:]
image.putpalette(asarray(pal,typecode=_UInt8).tostring())
return image
if mode == '1': # high input gives threshold for 1
bytedata = ((data > high)*255).astype('b')
image = Image.fromstring('L',shape,bytedata.tostring())
image = image.convert(mode='1')
return image
if cmin is None:
cmin = amin(ravel(data))
if cmax is None:
cmax = amax(ravel(data))
data = (data*1.0 - cmin)*(high-low)/(cmax-cmin) + low
if mode == 'I':
image = Image.fromstring(mode,shape,data.astype('i').tostring())
else:
raise ValueError, _errstr
return image
# if here then 3-d array with a 3 or a 4 in the shape length.
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
if channel_axis is None:
if (3 in shape):
ca = Numeric.nonzero(asarray(shape) == 3)[0]
else:
ca = Numeric.nonzero(asarray(shape) == 4)
if len(ca):
ca = ca[0]
else:
raise ValueError, "Could not find channel dimension."
else:
ca = channel_axis
numch = shape[ca]
if numch not in [3,4]:
raise ValueError, "Channel axis dimension is not valid."
bytedata = bytescale(data,high=high,low=low,cmin=cmin,cmax=cmax)
if ca == 2:
strdata = bytedata.tostring()
shape = (shape[1],shape[0])
elif ca == 1:
strdata = transpose(bytedata,(0,2,1)).tostring()
shape = (shape[2],shape[0])
elif ca == 0:
strdata = transpose(bytedata,(1,2,0)).tostring()
shape = (shape[2],shape[1])
if mode is None:
if numch == 3: mode = 'RGB'
else: mode = 'RGBA'
if mode not in ['RGB','RGBA','YCbCr','CMYK']:
raise ValueError, _errstr
if mode in ['RGB', 'YCbCr']:
assert numch == 3, "Invalid array shape for mode."
if mode in ['RGBA', 'CMYK']:
assert numch == 4, "Invalid array shape for mode."
# Here we know data and mode is coorect
image = Image.fromstring(mode, shape, strdata)
return image
def imrotate(arr,angle,interp='bilinear'):
"""Rotate an image counter-clockwise by angle degrees.
Interpolation methods can be:
'nearest' : for nearest neighbor
'bilinear' : for bilinear
'cubic' or 'bicubic' : for bicubic
"""
arr = asarray(arr)
func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
im = toimage(arr)
im = im.rotate(angle,resample=func[interp])
return fromimage(im)
def imresize(arr,newsize,interp='bilinear',mode=None):
newsize=list(newsize)
newsize.reverse()
newsize = tuple(newsize)
arr = asarray(arr)
func = {'nearest':0,'bilinear':2,'bicubic':3,'cubic':3}
im = toimage(arr,mode=mode)
im = im.resize(newsize,resample=func[interp])
return fromimage(im)
def imshow(arr):
"""Simple showing of an image through an external viewer.
"""
im = toimage(arr)
if (len(arr.shape) == 3) and (arr.shape[2] == 4):
try:
import os
im.save('/tmp/scipy_imshow.png')
if os.system("(xv /tmp/scipy_imshow.png; rm -f /tmp/scipy_imshow.png)&"):
raise RuntimeError
return
except:
print "Warning: Alpha channel may not be handled correctly."
im.show()
return
def imresize(arr,size):
"""Resize an image.
If size is an integer it is a percentage of current size.
If size is a float it is a fraction of current size.
If size is a tuple it is the size of the output image.
"""
im = toimage(arr)
ts = type(size)
if ts is types.IntType:
size = size / 100.0
if type(size) is types.FloatType:
size = (im.size[0]*size,im.size[1]*size)
else:
size = (size[1],size[0])
imnew = im.resize(size)
return fromimage(imnew)
def imfilter(arr,ftype):
"""Simple filtering of an image.
type can be:
'blur', 'contour', 'detail', 'edge_enhance', 'edge_enhance_more',
'emboss', 'find_edges', 'smooth', 'smooth_more', 'sharpen'
"""
_tdict = {'blur':ImageFilter.BLUR,
'contour':ImageFilter.CONTOUR,
'detail':ImageFilter.DETAIL,
'edge_enhance':ImageFilter.EDGE_ENHANCE,
'edge_enhance_more':ImageFilter.EDGE_ENHANCE_MORE,
'emboss':ImageFilter.EMBOSS,
'find_edges':ImageFilter.FIND_EDGES,
'smooth':ImageFilter.SMOOTH,
'smooth_more':ImageFilter.SMOOTH_MORE,
'sharpen':ImageFilter.SHARPEN
}
im = toimage(arr)
if ftype not in _tdict.keys():
raise ValueError, "Unknown filter type."
return fromimage(im.filter(_tdict[ftype]))
def radon(arr,theta=None):
if theta is None:
theta = mgrid[0:180]
s = zeros((arr.shape[1],len(theta)),'d')
k = 0
for th in theta:
im = imrotate(arr,-th)
s[:,k] = sum(im,axis=0)
k += 1
return s
|