1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
import scipy.special
from scipy_base import *
from scipy_base.fastumath import sqrt, exp, greater, equal, cos, add, sin
from spline import * # C-modules
gamma = scipy.special.gamma
def factorial(n):
return gamma(n+1)
def spline_filter(Iin, lmbda=5.0):
"""Smoothing spline (cubic) filtering of a rank-2 array.
Filter an input data set, Iin, using a (cubic) smoothing spline of
fall-off lmbda.
"""
intype = Iin.typecode()
hcol = sarray([1.0,4.0,1.0],'f')/6.0
if intype in ['F','D']:
Iin = Iin.astype('F')
ckr = cspline2d(Iin.real,lmbda)
cki = cspline2d(Iin.imag,lmbda)
outr = sepfir2d(ckr,hcol,hcol)
outi = sepfir2d(cki,hcol,hcol)
out = (outr + 1j*outi).astype(intype)
elif intype in ['f','d']:
ckr = cspline2d(Iin,lmbda)
out = sepfir2d(ckr, hcol, hcol)
out = out.astype(intype)
else:
raise TypeError;
return out
def _bspline(x,n):
"""bspline(x,n) -> y: B-spline basis function of order n.
"""
jlist = arange(n+2)
val = 0.0
baseval = x + (n+1)/2.0
for j in jlist:
xval = baseval - j
if xval >=0:
if j % 2 == 0:
fact = 1
else:
fact = -1
term = fact * (n+1) * xval**n / factorial(j) / factorial(n+1-j)
val = val + term
return val
bspline = vectorize(_bspline)
def gauss_spline(x,n):
"""Gaussian approximation to B-spline basis function of order n.
"""
signsq = (n+1) / 12.0
return 1/sqrt(2*pi*signsq) * exp(-x**2 / 2 / signsq)
def cubic(x):
ax = abs(x)
f1 = 2.0/3 - 1.0/2*ax**2 * (2-ax)
f2 = 1.0/6*(2-ax)**3
f3 = where(greater(ax,1),f2,f1)
return where(greater(ax,2),0,f3)
def quintic(n):
n = asarray(n)
an = abs(n)
f1 = where(equal(an,0),66.0/120.0,0)
f2 = where(equal(an,1),26.0/120.0,0)
f3 = where(equal(an,2),1.0/120.0,0)
return f1 + f2 + f3
def quadratic(x):
ax = abs(x)
f1 = 0.75-ax**2
f2 = (ax-1.5)**2 / 2.0
f3 = where(greater(abs(x),0.5),f2,f1)
return where(greater(abs(x),1.5),0,f3)
def c0_P(order):
# values taken from Unser, et.al. 1993 IEEE
if order == 0:
c0 = 1
P = array([1])
elif order == 1:
c0 = 1
P = array([0,1])
elif order == 2:
c0 = 8
P = array([1,6,1])
elif order == 3:
c0 = 6
P = array([1,4,1])
elif order == 4:
c0 = 384
P = array([1,76,230,76,1])
elif order == 5:
c0 = 120
P = array([1,26,66,26,1])
elif order == 6:
c0 = 46080
P = array([1,722,10543,23548, 10543, 722, 1])
elif order == 7:
c0 = 5040
P = array([1,120,1191,2416,1191, 120, 1])
else:
raise ValueError, "Unknown order."
def _coeff_smooth(lam):
xi = 1 - 96*lam + 24*lam * sqrt(3 + 144*lam)
omeg = arctan2(sqrt(144*lam-1),sqrt(xi))
rho = (24*lam - 1 - sqrt(xi)) / (24*lam)
rho = rho * sqrt((48*lam + 24*lam * sqrt(3+144*lam))/xi)
return rho,omeg
def _cubic_smooth_coeff(signal,lamb):
rho, omega = _coeff_smooth(lamb)
cs = 1-2*rho*cos(omega) + rho*rho
K = len(signal)
yp = zeros((K,),signal.typecode())
k = arange(K)
yp[0] = hc(0,cs,rho,omega)*signal[0] + \
add.reduce(hc(k+1,cs,rho,omega)*signal)
yp[1] = hc(0,cs,rho,omega)*signal[0] + \
hc(1,cs,rho,omega)*signal[1] + \
add.reduce(hc(k+2,cs,rho,omega)*signal)
for n in range(2,K):
yp[n] = cs * signal[n] + 2*rho*cos(omega)*yp[n-1] - rho*rho*yp[n-2]
y = zeros((K,),signal.typecode())
y[K-1] = add.reduce((hs(k,cs,rho,omega) + hs(k+1,cs,rho,omega))*signal[::-1])
y[K-2] = add.reduce((hs(k-1,cs,rho,omega) + hs(k+2,cs,rho,omega))*signal[::-1])
for n in range(K-3,-1,-1):
y[n] = cs*yp[n] + 2*rho*cos(omega)*y[n+1] - rho*rho*y[n+2]
return y
def _cubic_coeff(signal):
zi = -2 + sqrt(3)
K = len(signal)
yplus = zeros((K,),signal.typecode())
powers = zi**arange(K)
yplus[0] = signal[0] + zi*add.reduce(powers*signal)
for k in range(1,K):
yplus[k] = signal[k] + zi*yplus[k-1]
output = zeros((K,),signal.typecode())
output[K-1] = zi / (zi-1)*yplus[K-1]
for k in range(K-2,-1,-1):
output[k] = zi*(output[k+1]-yplus[k])
return output*6.0
def _quadratic_coeff(signal):
zi = -3 + 2*sqrt(2.0)
K = len(signal)
yplus = zeros((K,),signal.typecode())
powers = zi**arange(K)
yplus[0] = signal[0] + zi*add.reduce(powers*signal)
for k in range(1,K):
yplus[k] = signal[k] + zi*yplus[k-1]
output = zeros((K,),signal.typecode())
output[K-1] = zi / (zi-1)*yplus[K-1]
for k in range(K-2,-1,-1):
output[k] = zi*(output[k+1]-yplus[k])
return output*8.0
def cspline1d(signal,lamb=0.0):
"""Compute cubic spline coefficients for rank-1 array.
Description:
Find the cubic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from
the spline representation mirror-symmetric-convolve these coefficients
with a length 3 FIR window [1.0, 4.0, 1.0]/ 6.0 .
Inputs:
signal -- a rank-1 array representing samples of a signal.
lamb -- smoothing coefficient (default = 0.0)
Output:
c -- cubic spline coefficients.
"""
if lamb != 0.0:
return _cubic_smooth_coeff(signal,lamb)
else:
return _cubic_coeff(signal)
def qspline1d(signal,lamb=0.0):
"""Compute quadratic spline coefficients for rank-1 array.
Description:
Find the quadratic spline coefficients for a 1-D signal assuming
mirror-symmetric boundary conditions. To obtain the signal back from
the spline representation mirror-symmetric-convolve these coefficients
with a length 3 FIR window [1.0, 6.0, 1.0]/ 8.0 .
Inputs:
signal -- a rank-1 array representing samples of a signal.
lamb -- smoothing coefficient (must be zero for now.)
Output:
c -- cubic spline coefficients.
"""
if lamb != 0.0:
raise ValueError, "Smoothing quadratic splines not supported yet."
else:
return _quadratic_coeff(signal)
def hc(k,cs,rho,omega):
return cs / sin(omega) * (rho**k)*sin(omega*(k+1))*(greater(k,-1))
def hs(k,cs,rho,omega):
c0 = cs*cs * (1 + rho*rho) / (1 - rho*rho) / (1-2*rho*rho*cos(2*omega) + rho**4)
gamma = (1-rho*rho) / (1+rho*rho) / tan(omega)
ak = abs(k)
return c0 * rho**ak * (cos(omega*ak) + gamma*sin(omega*ak))
|