File: NarPlotter.py

package info (click to toggle)
python-scipy 0.3.2-6
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 13,572 kB
  • ctags: 20,326
  • sloc: ansic: 87,138; fortran: 51,876; python: 47,747; cpp: 2,134; objc: 384; makefile: 175; sh: 83
file content (1958 lines) | stat: -rw-r--r-- 85,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved.  See Legal.htm for full text and disclaimer.

import narcisse
from Numeric import *
from scipy_base.fastumath import *
# We need types to check args to some routines
from types import *
from graftypes import *
from shapetest import *
from arrayfns import *
from string import uppercase
import os

def minmax1 ( x ) :
   """minmax1 (x) where x is a one-dimensional array computes the minimum and
   maximum values in the array and returns them as a list [min, max].
   """
   max = x [0]
   min = x [0]
   for i in range (len (x)) :
      if x [i] > max : max = x[i]
      if x [i] < min : min = x [i]
   return [floor (min), ceil (max)]


def minmax2 ( x ) :
   """minmax2 (x) where x is a two-dimensional array computes the minimum and
   maximum values in the array and returns them as a list [min, max]. I use
   this routine because there are apparently some circumstances in which Gist
   fails to calculate default axis limits correctly.
   """
   max = x [0, 0]
   min = x [0, 0]
   for i in range (shape (x) [0]) :
      for j in range (shape (x) [1]) :
         if x [i, j] > max : max = x [i, j]
         if x [i, j] < min : min = x [i, j]
   return [floor (min), ceil (max)]

NarFloat = 'f'
NarInt = 'i'

# Define a simple title function: missing arguments become blanks.
class Plotter :

   def type (self) :
       return NarType

   def open ( self , filename = ' ' ) :
       """open ( string ) opens a connection to Narcisse (if it can)
       using filename 'string.'
       """
       if self._file_open :
          if self._file_name == filename :
             return # quietly
          else :
             raise self.ConnectException , \
                 "This instance already open with filename '" + \
                 self._file_name + "'."
       else :
          self._file_descr = narcisse.naropen ( filename )
          if self._file_descr >= 0 :
             self._file_open = 1
             self._file_name = filename
          else :
             raise self.ConnectException , \
                 "Unable to open graphics file '" + filename + "'."

   _cgm_warning = 0
   _ps_warning = 0

   def __init__ ( self , filename = ' ' , ** kw ) :
       self.NarError = "NarError"
       if filename == "none" :
          if not self._cgm_warning :
             print "Sorry, Narcisse does not write cgm files."
             print "...This will be your only warning."
             self._cgm_warning = 1
       elif len (filename) >= 3 and filename [-3:] == ".ps" :
          if not self._ps_warning :
             print "Sorry, Narcisse does not write postscript files"
             print "except from the graphical user interface."
             print "...This will be your only warning."
             self._ps_warning = 1
       self._file_open = 0
       self._frozen = 0
       self._freeze_each = 0
       self._mono = 0    #defaults to color
       self._file_descr = -1
       self.ConnectException = "ConnectException"
       self.open ( filename )
       self.freeze_graph ( )
       self.set_grid_type ( "axes" )
       self._xyequal = 0
       self.set_default_axes_limits () # let Narcisse determine limits
       self.set_axis_lin ("all")       # all axes linear scales
       narcisse.narsetar ( "curve_label_x_min", 0.2 )
       narcisse.narsetar ( "curve_label_x_max", 0.2 )
       narcisse.narsetar ( "curve_label_y_min", 0.2 )
       narcisse.narsetar ( "curve_label_y_max", 0.2 )
       narcisse.narsetvals ( self._file_descr )
       self._x_axis_min = 0.
       self._y_axis_min = 0.
       self._yr_axis_min = 0.
       self._z_axis_min = 0.
       self._c_axis_min = 0.
       self._x_axis_max = 0.
       self._y_axis_max = 0.
       self._yr_axis_max = 0.
       self._z_axis_max = 0.
       self._c_axis_max = 0.
       self.clear_text ( )
       self.set_text_color (2, 0) #black or nearly so
       self.set_axis_labels ()         # To English defaults
       self.set_titles ( )
       self.set_title_colors ( )
       self.plot_curve = self.plot_object
       self.add_curve = self.add_object
       self._graph_type = 0
       if kw.has_key ("style") :
          self._style = kw ["style"]
       else :
          self._style = " "
       self._next_letter = 0

   def close ( self ) :
       "close () closes the connection to Narcisse."
       if self._file_open :
          narcisse.narclose ( self._file_descr )
          self._file_descr = -1
          self._file_open = 0
          self._file_name = ""

   def __del__ ( self ) :
       self.close ( )

   def new_frame (self) :
       return

   def set_tosys (self, *x) :
       return

   def set_mono ( self ) :
       """set_mono () will set the 3d display mode permanently to
       monochrome mesh. This is the only meaningful display
       mode if you are only displaying 3d data on a monochrome
       monitor. Calls to set_3d_options will do nothing
       (silently). Call set_color () to allow color options
       again."""

       self.set_3d_options ( color_bar, color_bar_pos, "wm" )
       self._mono = 1

   def synchronize ( self ) :
       if self._file_open :
          narcisse.narsync ( self._file_descr )
       else :
          print "synchronize: sorry, nothing is open to synchronize with."

   def query ( self ) :
       if not self._file_open :
          return -1
       else :
          return narcisse.narquery ( self._file_name )
  
   def set_color ( self ) :
       """set_color ( ) will allow you to use the color 3d options
       which are disabled by set_mono ( )."""

       self._mono = 0

   # Everything on a 2d graph shares the same color card:
   # (This dictionary is used to convert Narcisse color card names
   # to the numbers required by the plotting routines. It will also
   # convert Gist names.)
   narcisse_color_card_dict = { "absolute" : 0 , "binary" : 1 ,
   "bluegreen" : 2 , "default" : 6 , "negative" : 4 , "positive" : 5 ,
   "rainbow" : 6 , "rainbowhls" : 7 , "random" : 8 , "redblue" : 9 ,
   "redgreen" : 10 , "shifted" : 11 ,"earth.gp" : 8 , "stern.gp" : 2 ,
   "rainbow.gp" : 7 , "heat.gp" : 10 , "gray.gp" : 0 , "yarg.gp" : 4 }

   def set_color_card ( self , h , now = 0) :
       """set_color_card ( n ) indicates a predefined color card
       for a plot. See the manual for the values of n and the
       color card selected (sec. 4.2.134, parametre_map)."""

       if self.narcisse_color_card_dict.has_key (h) :
          h = self.narcisse_color_card_dict [h]
       narcisse.narsetai ("parameter_map", h)
       narcisse.narsetvals (self._file_descr)
  
   def set_titles ( self , * vals ):
       """set_titles ('bottom', 'top', 'left', 'right')
         All arguments are optional. Missing ones default to ' '."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len (vals) == 0 :
          vals = []
       elif type (vals [0]) == StringType :
          vals = [vals [0]]
       else :
          vals = vals [0]
       if len (vals) == 0 :
          vals = [ " " , " " , " " , " " ]
       elif len (vals) == 1 :
          vals = vals + [ " " , " " , " " ]
       elif len (vals) == 2 :
          vals = vals + [ " " , " " ]
       elif len (vals) == 3 :
          vals = vals + [ " " ]
       elif len (vals) <> 4 :
          print "titles must be one string or a list of up to four strings!"
          return
       narcisse.narsetac ( "title_value_bottom" , vals [0] )
       narcisse.narsetac ( "title_value_top" , vals [1] )
       narcisse.narsetac ( "title_value_left" , vals [2] )
       narcisse.narsetac ( "title_value_right" , vals [3] )
       narcisse.narsetvals ( self._file_descr )

   # Translation table from color names to Narcisse (only works for rainbowhls)
   gist_to_narcisse_col = { "bg" : 0, "background" : 0, "fg" : 1,
                            "foreground" : 1, "blue" : 2, "green" : 3,
                            "yellow" : 4 , "orange" : 5 , "red" : 6,
                            "magenta" : 7, "purple" : 7, "black" : 8,
                            "white" : 9, "cyan" : 20 , "yellowgreen" : 39,
                            "gold" : 42 , "orangered" : 47, "redorange" : 48,
                            -1 : 0 , -2 : 1 , -3 : 8 , -4 : 9 , -5 : 6 ,
                            -6 : 3 , -7 : 2 , -8 : 20 , -9 : 7 , -10 : 4 }

   def _figure_color (self , col) :
       """_figure_color ( col ) does the best job it can to return
       a correct color. If the value is legal for Narcisse (even though
       it may mean something else in another system) then it is
       returned unchanged. If it is a Gist value, it is converted
       to Narcisse if possible. In all other cases, return 1.
       """
       if type (col) == IntType and 0 <= col <= 63 :
          return col
       if self.gist_to_narcisse_col.has_key (col) :
          return self.gist_to_narcisse_col [col]
       return 1

   def set_title_colors ( self , * vals ) :
       """set_title_colors (bottom_color, top_color, left_color, right_color)
         All arguments are optional, integers from 0 to 63 representing
         a color in some color map. Missing arguments default
         to foreground."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len (vals) == 0 :
          vals = []
       elif type (vals [0]) == IntType :
          vals = [vals [0]]
       else :
          vals = vals [0]
       if len (vals) == 0 :
          vals = [ 1 , 1 , 1 , 1 ]
       elif len (vals) == 1 :
          vals = [vals [0]] + [ 1 , 1 , 1 ]
       elif len (vals) == 2 :
          vals = [vals [0]] + [vals [1]] + [ 1 , 1 ]
       elif len (vals) == 3 :
          vals = [vals [0]] + [vals [1]] + [vals [2]] + [ 1 ]
       elif len (vals) <> 4 :
          raise self.NarError ,\
             "Title color must be list of size 4 or less."
       else :
          vals = [vals [0]] + [vals [1]] + [vals [2]] + [vals [3]]
       for i in range (4) :
          vals[i] = self._figure_color (vals [i])
       narcisse.narsetai ( "title_color_bottom" , vals [0] )
       narcisse.narsetai ( "title_color_top" , vals [1] )
       narcisse.narsetai ( "title_color_left" , vals [2] )
       narcisse.narsetai ( "title_color_right" , vals [3] )
       narcisse.narsetvals ( self._file_descr )
 
   def set_grid_type ( self , * val ) :
       """set_grid_type ( string ) determines how intrusive the axes
       and grids are. The legal arguments are:
       'none'--no axes and grids are drawn.
       'axes'--axes with tick marks.
       'wide'--widely spaced grid in x and y (2d or 3d).
       'full'--narrowly spaced grid in x and y (2d or 3d).
       If no argument is specified, the default is 'axes'."""
 
       if len ( val ) > 1 :
          raise self.NarError , "Too many arguments to set_grid_type."
       if len ( val ) == 0 or val [0] == "axes" :
          narcisse.narsetai ( "grid_type" , 1 )
       elif val [0] == "none" :
          narcisse.narsetai ( "grid_type" , 0 )
       elif val [0] == "wide" :
          narcisse.narsetai ( "grid_type" , 2 )
       elif val [0] == "full" :
          narcisse.narsetai ( "grid_type" , 3 )
       else :
          raise self.NarError , val [0] + \
             " is an inappropriate argument for set_grid_type."
       narcisse.narsetvals ( self._file_descr )
 
   def set_3d_grid_type ( self , val ) :
       """set_3d_grid_type (gt) sets what the wire grid will look like
       in a 3d surface plot in one of the wire modes. The choices
       for gt are 'x' (x lines only), 'y' (y lines only) and 'xy'
       (both x and y lines)."""
 
       if val == "x" :
          narcisse.narsetai ( "option_3d_grid_type" , 0 )
       elif val == "y" :
          narcisse.narsetai ( "option_3d_grid_type" , 1 )
       else : # You'll get "xy" if you goof.
          narcisse.narsetai ( "option_3d_grid_type" , 2 )
       narcisse.narsetvals ( self._file_descr )
 
   def set_connect ( self , val ) :
       """set_connect (cn) tells whether to connect two or more
       surface plots, which presumably improves masking.
       cn=1 to connect, cn=0 to disconnect."""
 
       narcisse.narsetai ("option_3d_conv_mode" , val)
       narcisse.narsetvals ( self._file_descr )
 
   def set_link ( self , val ) :
       """set_link (ln) tells whether to link two or more surfaces
       plotted with different 3d options into one plot (otherwise
       all surfaces will have the same options). ln=1 to link,
       ln = 0 not to link. This needs to be set to 1 for all surfaces
       except the last. Connection must not be set (see set_connect ()).
       The axes must not be plotted for surfaces after the first."""
 
       narcisse.narsetai ("parameter_scene", val)
       narcisse.narsetvals ( self._file_descr )
 
   def set_z_c_switch ( self , val ) :
       """set_z_c_switch (sw) tells whether to switch the roles
       of the z and c variables in a 4d plot. sw=1 to do the
       switch, sw=0 not to do it."""
 
       narcisse.narsetai ("option_3d_z_or_c", val)
       narcisse.narsetvals ( self._file_descr )
 
   # routine to label the axes
   def set_axis_labels ( self , * vals ):
       """set_axis_labels ('x_label', 'y_label', 'z_label', 'yr_label')
         All arguments are optional. Default values (from right):
         ' ', 'Z axis', 'Y axis', 'X axis'."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len (vals) == 1 and (type (vals [0]) == TupleType or
                               type (vals [0]) == ListType) :
          valsin = vals[0]
       else :
          valsin = vals
       vals = [ "X axis" , "Y axis" , "Z axis" , " " ]
       if len (valsin) >= 1 :
          vals [0] = valsin [0]
       if len (valsin) >= 2 :
          vals [1] = valsin [1]
       if len (valsin) >= 3 :
          vals [2] = valsin [2]
       narcisse.narsetac ( "x_axis_title" , vals [0] )
       narcisse.narsetac ( "y_axis_title" , vals [1] )
       narcisse.narsetac ( "z_axis_title" , vals [2] )
       narcisse.narsetac ( "yr_axis_title" , vals [3] )
       narcisse.narsetvals ( self._file_descr )
 
   # routines to set axis scales -- linear scales
   def set_axis_lin ( self , ax ) :
       """set_axis_lin (ax) where ax can be 'x', 'y', 'yr', 'z', 'c', or 'all'.
          The specified axis will have a linear scale."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if ( ax == "x" ) :
          narcisse.narsetai ( "x_axis_log" , 0 )
       elif ( ax == "y" ) :
          narcisse.narsetai ( "y_axis_log" , 0 )
       elif ( ax == "yr" ) :
          narcisse.narsetai ( "yr_axis_log" , 0 )
       elif ( ax == "z" ) :
          narcisse.narsetai ( "z_axis_log" , 0 )
       elif ( ax == "c" ) :
          narcisse.narsetai ( "c_axis_log" , 0 )
       elif ax == "all" :
          narcisse.narsetai ( "x_axis_log" , 0 )
          narcisse.narsetai ( "y_axis_log" , 0 )
          narcisse.narsetai ( "yr_axis_log" , 0 )
          narcisse.narsetai ( "z_axis_log" , 0 )
          narcisse.narsetai ( "c_axis_log" , 0 )
       else :
          raise self.NarError , "set_axis_lin: axis must be x, y, yr, z, or c."
       narcisse.narsetvals ( self._file_descr )
 
   # routines to set axis scales -- log scales
   def set_axis_log ( self , ax ) :
       """set_axis_log (ax) where ax can be 'x', 'y', 'yr', 'z', 'c', or 'all'.
          The specified axis will have a logarithmic scale."""
 
       if ( ax == "x" ) :
          narcisse.narsetai ( "x_axis_log" , 1 )
       elif ( ax == "y" ) :
          narcisse.narsetai ( "y_axis_log" , 1 )
       elif ( ax == "yr" ) :
          narcisse.narsetai ( "yr_axis_log" , 1 )
       elif ( ax == "z" ) :
          narcisse.narsetai ( "z_axis_log" , 1 )
       elif ( ax == "c" ) :
          narcisse.narsetai ( "c_axis_log" , 1 )
       elif ax == "all" :
          narcisse.narsetai ( "x_axis_log" , 1 )
          narcisse.narsetai ( "y_axis_log" , 1 )
          narcisse.narsetai ( "yr_axis_log" , 1 )
          narcisse.narsetai ( "z_axis_log" , 1 )
          narcisse.narsetai ( "c_axis_log" , 1 )
       else :
          raise self.NarError , "axis_log: axis must be x, y, yr, z, or c."
       narcisse.narsetvals ( self._file_descr )
 
   # special routines to set both x and y scales at once
   def set_linlin ( self ) :
       "set_linlin () sets both x and y axes to linear scale."
       self.set_axis_lin ( "x" )
       self.set_axis_lin ( "y" )
 
   def set_linlog ( self ) :
       'set_linlog () sets x axis to linear, y axis to logarithmic.'
       self.set_axis_lin ( "x" )
       self.set_axis_log ( "y" )
 
   def set_loglin ( self ) :
       'set_loglin () sets x axis to logarithmic, y axis to linear.'
       self.set_axis_log ( "x" )
       self.set_axis_lin ( "y" )
 
   def set_loglog ( self ) :
       'set_loglog () sets both x and y axes to logarithmic scale.'
       self.set_axis_log ( "x" )
       self.set_axis_log ( "y" )
 
   #determine which y axis to use for a curve
   def set_y_axis ( self , val1 , * val2 ) :
       """use set_y_axis ( 'left' , n ) or set_y_axis ( 'right' , n )
       to cause curve number n to be associated with the left or
       right y axis."""
 
       if len ( val2 ) == 2 :
          n = val2 [1]
       else :
          n = 0       # set for curve 0 if not specified
       if len ( val2 ) == 0 or val2 [0] == "left" or val2 [0] != "right" :
          narcisse.narsetaii ( "curve_y_axis" , 0 , n )
       else :
          narcisse.narsetaii ( "curve_y_axis" , 1 , n )
       narcisse.narsetvals ( self._file_descr )

   def set_bytscl ( self, cmin, cmax ) :
       return

   def add_text (self, str, x, y, size, color="fg", tosys = 1) :
       """add_text (str, x, y, size [, color]) adds a text to a graph."""
       return
 
   # set the maximum value of an axis
   def set_axis_max ( self , ax , * val1 ) :
       """set_axis_max (ax, val) where ax is 'x', 'y', 'z', 'yr', or 'c'.
          The maximum of the specified axis will be set to val.
          val should be a PyFloat object."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val1 ) == 0 :
          val = 0.0
       else :
          val = val1 [0]
       if ( ax == "x" ) :
          self._x_axis_max = val
          narcisse.narsetar ( "x_axis_max" , val )
       elif ( ax == "y" ) :
          self._y_axis_max = val
          narcisse.narsetar ( "y_axis_max" , val )
       elif ( ax == "yr" ) :
          self._yr_axis_max = val
          narcisse.narsetar ( "yr_axis_max" , val )
       elif ( ax == "z" ) :
          self._z_axis_max = val
          narcisse.narsetar ( "z_axis_max" , val )
       elif ( ax == "c" ) :
          self._c_axis_max = val
          narcisse.narsetar ( "c_axis_max" , val )
       else :
          raise self.NarError , "set_axis_max: axis must be x, y, yr, z, or c."
#      narcisse.narsetvals ( self._file_descr )
 
   # set the minimum value of an axis
   def set_axis_min ( self , ax , * val1 ) :
       '''set_axis_min (ax, val) where ax is "x", "y", "z", "yr", or "c".
          The minimum of the specified axis will be set to val.
          val should be a PyFloat object.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val1 ) == 0 :
          val = 0.0
       else :
          val = val1 [0]
       if ( ax == "x" ) :
          self._x_axis_min = val
          narcisse.narsetar ( "x_axis_min" , val )
       elif ( ax == "y" ) :
          self._y_axis_min = val
          narcisse.narsetar ( "y_axis_min" , val )
       elif ( ax == "yr" ) :
          self._yr_axis_min = val
          narcisse.narsetar ( "yr_axis_min" , val )
       elif ( ax == "z" ) :
          self._z_axis_min = val
          narcisse.narsetar ( "z_axis_min" , val )
       elif ( ax == "c" ) :
          self._c_axis_min = val
          narcisse.narsetar ( "c_axis_min" , val )
       else :
          raise self.NarError , "set_axis_min: axis must be x, y, yr, z, or c."
#      narcisse.narsetvals ( self._file_descr )

   # Send axes limits at the last moment before a plot
   def _send_axes_limits ( self ) :
       narcisse.narsetar ( "x_axis_max" , self._x_axis_max )
       narcisse.narsetar ( "x_axis_min" , self._x_axis_min )
       narcisse.narsetar ( "y_axis_max" , self._y_axis_max )
       narcisse.narsetar ( "y_axis_min" , self._y_axis_min )
       narcisse.narsetar ( "yr_axis_max" , self._yr_axis_max )
       narcisse.narsetar ( "yr_axis_min" , self._yr_axis_min )
       narcisse.narsetar ( "z_axis_max" , self._z_axis_max )
       narcisse.narsetar ( "z_axis_min" , self._z_axis_min )
       narcisse.narsetar ( "c_axis_max" , self._c_axis_max )
       narcisse.narsetar ( "c_axis_min" , self._c_axis_min )
       # narsetvals will be done in send_graph
 
   # Allow Narcisse to calculate the axis limits
   def set_default_axes_limits ( self , * h ) :
       '''set_default_axes_limits () sets narcisse to compute the maximum
       and minimum of the axes depending on the data.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if self._xyequal : # compute xy limits myself
          xdist = self._x_axis_max - self._x_axis_min
          ydist = self._y_axis_max - self._y_axis_min
          if xdist > ydist :
             self._y_axis_max = self._y_axis_max + xdist - ydist
          elif ydist > xdist :
             self._x_axis_max = self._x_axis_max + ydist - xdist
          narcisse.narsetar ( "x_axis_max" , self._x_axis_max )
          narcisse.narsetar ( "y_axis_max" , self._y_axis_max )
          narcisse.narsetar ( "x_axis_min" , self._x_axis_min )
          narcisse.narsetar ( "y_axis_min" , self._y_axis_min )
#         narcisse.narsetvals ( self._file_descr )
       else :
          narcisse.narsetar ( "x_axis_max" , 0.0 )
          narcisse.narsetar ( "y_axis_max" , 0.0 )
          narcisse.narsetar ( "yr_axis_max" , 0.0 )
          narcisse.narsetar ( "z_axis_max" , 0.0 )
          narcisse.narsetar ( "c_axis_max" , 0.0 )
          narcisse.narsetar ( "x_axis_min" , 0.0 )
          narcisse.narsetar ( "y_axis_min" , 0.0 )
          narcisse.narsetar ( "yr_axis_min" , 0.0 )
          narcisse.narsetar ( "z_axis_min" , 0.0 )
          narcisse.narsetar ( "c_axis_min" , 0.0 )
#         narcisse.narsetvals ( self._file_descr )
 
   # routines to set the limits on individual axes
   def set_x_axis_limits ( self , val1 , * val2i ) :
       '''set_x_axis_limits (min, max) sets the limits on the x axis to
       the specified (pyFloat) sizes.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val2i ) == 0 :
          val2 = 0.0
       else :
          val2 = val2i [0]
       self._x_axis_min = val1
       self._x_axis_max = val2
       narcisse.narsetar ( "x_axis_max" , val2)
       narcisse.narsetar ( "x_axis_min" , val1 )
#      narcisse.narsetvals ( self._file_descr )
 
   def set_y_axis_limits ( self , val1 , * val2i ) :
       '''set_y_axis_limits (min, max) sets the limits on the y axis to
       the specified (pyFloat) sizes.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val2i ) == 0 :
          val2 = 0.0
       else :
          val2 = val2i [0]
       self._y_axis_min = val1
       self._y_axis_max = val2
       narcisse.narsetar ( "y_axis_max" , val2)
       narcisse.narsetar ( "y_axis_min" , val1 )
#      narcisse.narsetvals ( self._file_descr )
 
   def set_yr_axis_limits ( self , val1 , * val2i ) :
       '''set_yr_axis_limits (min, max) sets the limits on the yr axis to
       the specified (pyFloat) sizes.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val2i ) == 0 :
          val2 = 0.0
       else :
          val2 = val2i [0]
       self._yr_axis_min = val1
       self._yr_axis_max = val2
       narcisse.narsetar ( "yr_axis_max" , val2)
       narcisse.narsetar ( "yr_axis_min" , val1 )
#      narcisse.narsetvals ( self._file_descr )
 
   def set_z_axis_limits ( self , val1 , * val2i ) :
       '''set_z_axis_limits (min, max) sets the limits on the z axis to
       the specified (pyFloat) sizes.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val2i ) == 0 :
          val2 = 0.0
       else :
          val2 = val2i [0]
       self._z_axis_min = val1
       self._z_axis_max = val2
       narcisse.narsetar ( "z_axis_max" , val2)
       narcisse.narsetar ( "z_axis_min" , val1 )
#      narcisse.narsetvals ( self._file_descr )
 
   def set_c_axis_limits ( self , val1 , * val2i ) :
       '''set_c_axis_limits (min, max) sets the limits on the c axis to
       the specified (pyFloat) sizes.'''
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val2i ) == 0 :
          val2 = 0.0
       else :
          val2 = val2i [0]
       self._c_axis_min = val1
       self._c_axis_max = val2
       narcisse.narsetar ( "c_axis_max" , val2)
       narcisse.narsetar ( "c_axis_min" , val1 )
#      narcisse.narsetvals ( self._file_descr )
 
   # stuff to help set 3d options
   # (1) These are the legal arguments and their values if wire shows
   legal_3d_options = { 'wm' : 0 , 'w3' : 1 , 'w4' : 3 , 'f3' : 8 , \
                        'f4' : 16 , 'i3' : 32 , 'i4' : 64 , 's3' : 128 , \
                        's4' : 256 , 'none' : 0}
   # (2) These are the values of the other arguments if there is no wire
   legal_3d_no_wire = { 'f3' : 7 , 'f4' : 15 ,  'i3' : 31 , 'i4' : 63 , \
                        's3' : 127 , 's4' : 255 }
   # (3) The following arguments can occur together; the values given
   #     are used if there is no wire showing. (If wire is present,
   #     the values in legal_3d_options are simply or'ed.
   legal_3d_double = { 'f3' : { 'i3' : 39 , 'i4' : 71 } ,
                       'f4' : { 'i3' : 47 , 'i4' : 79 } ,
                       'i3' : { 'f3' : 39 , 'f4' : 47 } ,
                       'i4' : { 'f3' : 71 , 'f4' : 79 } }
 
   def set_3d_options ( self , color_bar , color_bar_pos , * vals ) :
       """set_3d_options (args) may be called with no argument,
       a single string argument, or a sequence of up to three strings.
       If called with no arguments, the graph display is erased.
       A surface is colored by height in z if a 3d option is
       specified, and by the value of a given function if a 4d
       option is specified. With a wire grid option, the grid
       is colored; with a flat option, the quadrilaterals set
       off by grid lines are colored; with a smooth option,
       the surface itself is colored by height; and with an iso
       option, the contour lines are colored. flat and iso options
       may be used together in any combination. wire grid options
       are independent of the other options. Legal arguments for
       set_3d_options are:
       'wm'--monochrome wire grid; 'w3' and 'w4'--3d and 4d
             coloring of wire grid.
       'f3' and 'f4'--flat 3d and 4d coloring options.
       'i3' and 'i4'--3d and 4d isoline (contour line) options.
       's3' and 's4'--3d and 4d smooth coloring options."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if self._mono == 1 :
          return
       if len (vals) == 0 :
          vals = ["wm"]
       elif is_scalar (vals) :
          vals = [vals [0]]
       else :
          vals = vals [0]
          if is_scalar (vals) :
             vals = [vals]
       if len (vals) > 3 :
          raise self.NarError , "set_3d_options: too many arguments"
       wire_option = -1 # If this ever gets sent, the graph vanishes
       option = 0
       c_color_bar = 0
       z_color_bar = 0
       for i in range ( len (vals) ) :
          if vals [i] == "s4" or vals [i] == "i4" :
             c_color_bar = color_bar
          if vals [i] == "s3" or vals [i] == "i3" :
             z_color_bar = color_bar
          if not self.legal_3d_options.has_key ( vals [i] ) :
             raise self.NarError , "set_3d_options: "\
                   + vals [i] + " is an illegal option."
          if self.legal_3d_options [vals [i]] <= 3 :
             wire_option = self.legal_3d_options [vals [i]]
       if wire_option != -1 :
          for i in range ( len (vals) ) :
             option = option | self.legal_3d_options [vals [i]]
       elif len (vals) >= 1 :
          if len (vals) == 1 :
             option = self.legal_3d_no_wire [vals [0]]
          elif not self.legal_3d_double.has_key [vals [0]] or \
               not self.legal_3d_double [vals [0]].has_key (vals [1]) :
             print "set_3d_options: illegal combination of options: " \
                    + vals [0] + " and " + vals [1] + "."
             return
          else :
             option = self.legal_3d_double [vals [0]][vals [1]]
       else : # cause graph to commit suicide if no args given
          option = -1
       # at this point the arguments were legal and 'option' has been set.
       narcisse.narsetai ( "option_3d" , option )
       # check out whether a color bar is wanted :
       if c_color_bar :
          if color_bar_pos is not None :
             c_color_bar = 1
             narcisse.narsetai ( "height_c_x_min", color_bar_pos [0, 0])
             narcisse.narsetai ( "height_c_y_min", color_bar_pos [0, 1])
             narcisse.narsetai ( "height_c_x_max", color_bar_pos [1, 0])
             narcisse.narsetai ( "height_c_x_max", color_bar_pos [1, 1])
          else :
             c_color_bar = 2
          narcisse.narsetai ( "height_c_type", c_color_bar )
       elif z_color_bar :
          if color_bar_pos is not None :
             z_color_bar = 1
             narcisse.narsetai ( "height_z_x_min", color_bar_pos [0, 0])
             narcisse.narsetai ( "height_z_y_min", color_bar_pos [0, 1])
             narcisse.narsetai ( "height_z_x_max", color_bar_pos [1, 0])
             narcisse.narsetai ( "height_z_x_max", color_bar_pos [1, 1])
          else :
             z_color_bar = 2
          narcisse.narsetai ( "height_z_type", z_color_bar )
       else :
          narcisse.narsetai ( "height_c_type", 0)
          narcisse.narsetai ( "height_z_type", 0)
       narcisse.narsetvals ( self._file_descr )
 
   # Some other routines to set stuff relating to 3d options
   def set_z_contours ( self , val ) :
       """set_z_contours (arg) sets various properties when doing 3d contour
       (iso), smooth, or flat plots. It accepts one argument, as
       follows:
          if an integer n, sets the number of contours to n. This also
                       clears the contour levels array. Countour levels
                       will be computed automatically from the data.
          if a string: 'lin' plots the contours linearly spaced.
                       'log' plots the contours logarithmically spaced.
          if an array NarFloat: sets the contour levels to the values in the
                       array."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if type ( val ) == IntType :
          for i in range ( val ) :
             narcisse.narsetari ("height_z", 0.0 , i )
          narcisse.narsetvals ( self._file_descr )
          return
       elif type ( val ) == StringType :
          if val == "log" :
             narcisse.narsetai ("height_z_log", 1)
             narcisse.narsetvals ( self._file_descr )
             return
          elif val == "lin" :
             narcisse.narsetai ("height_z_log", 0)
             narcisse.narsetvals ( self._file_descr )
             return
       elif type ( val ) == ArrayType :
          val = val.astype (NarFloat)
          if len (val.shape) == 1 :
             # Note: when setting a Narcisse array you must do a narsetvals
             # after setting each element. If instead you send a whole list
             # of values all at once, then only the last takes effect and
             # all lower values in the table are cleared.
             for i in range (val.shape [0]) :
                narcisse.narsetari ("height_z", val [i] , i)
                narcisse.narsetvals ( self._file_descr )
             narcisse.narsetar ("height_z_h_min", val [0])
             narcisse.narsetar ("height_z_h_max", val [val.shape [0]-1])
             narcisse.narsetvals ( self._file_descr )
             return

       raise self.NarError , "Wrong type of argument to set_z_contours."
 
   def set_c_contours ( self , val ) :
       """set_c_contours (arg) sets various properties when doing 4d contour
       (iso), smooth, or flat plots. It accepts one argument, as
       follows:
          if an integer n, sets the number of contours to n. This also
                       clears the contour levels array. Countour levels
                       will be computed automatically from the data.
          if a string: 'lin' plots the contours linearly spaced.
                       'log' plots the contours logarithmically spaced.
          if an Array NarFloat: sets the contour levels to the values in the
                       array."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if type ( val ) == IntType :
          for i in range (val) :
             narcisse.narsetari ("height_c", 0.0 , i )
          narcisse.narsetvals ( self._file_descr )
          return
       elif type ( val ) == StringType :
          if val == "log" :
             narcisse.narsetai ("height_c_log", 1)
             narcisse.narsetvals ( self._file_descr )
             return
          elif val == "lin" :
             narcisse.narsetai ("height_c_log", 0)
             narcisse.narsetvals ( self._file_descr )
             return
       elif type ( val ) == ArrayType :
          val = val.astype (NarFloat)
          if len (val.shape) == 1 :
             # Note: when setting a Narcisse array you must do a narsetvals
             # after setting each element. If instead you send a whole list
             # of values all at once, then only the last takes effect and
             # all lower values in the table are cleared.
             for i in range (val.shape [0]) :
                narcisse.narsetari ("height_c", val [i] , i)
                narcisse.narsetvals ( self._file_descr )
             narcisse.narsetar ("height_c_h_min", val [0])
             narcisse.narsetar ("height_c_h_max", val [val.shape [0]-1])
             narcisse.narsetvals ( self._file_descr )
             return
 
       raise self.NarError , "Wrong type of argument to set_c_contours."
 
   # set the mask (hidden line remover) for 3d
   def set_mask ( self , * val ) :
       """set_mask (arg) determines whether hidden parts of the surface
       will be shown on the graph, and if not, what algorithm
       will be used to determine what is hidden. The allowed
       arguments and masking algorithm are as follows:
       'none'--no masking. in wire grid mode, all grid lines
               are visible.
       'min'--the surface is traced beginning in the corner
              closest to the observer.
       'max'--the surface is traced beginning in the corner
              farthest from the observer.
       'sort'--a cell sorting is carried out to determine the
               masking."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 or val [0] == "none" :
          narcisse.narsetai ( "option_3d_mask_type" , 0 ) # default: no mask
       elif val [0] == "min" :
          narcisse.narsetai ( "option_3d_mask_type" , 1 ) # minimum mask
       elif val [0] == "max" :
          narcisse.narsetai ( "option_3d_mask_type" , 2 ) # maximum mask
       elif val [0] == "sort" :
          narcisse.narsetai ( "option_3d_mask_type" , 3 ) # sorted mask
       else :
          raise self.NarError , val [0] + " is not a valid mask type."
       narcisse.narsetvals ( self._file_descr )
 
   # Set language
   def set_language ( self , * val ) :
       """set_language (arg) determines what language the Narcisse GUI will
       be displayed in. Called with no argument, it sets the language
       to English. Otherwise it may be called with 'English', 'French',
       'anglais', or 'francaise'. In a concession to the lazy among us,
       'english' and 'french' are also allowed."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 or val [0] == "English" or val [0] == "english" :
          narcisse.narsetac ( "language" , "anglais" )
       elif val [0] == "French" or val [0] == "french" :
          narcisse.narsetac ( "language" , "francais" )
       else : # let the user commit suicide
          narcisse.narsetac ( "language" , val [0] )
       narcisse.narsetvals ( self._file_descr )
 
   # commands to set the angle of view:
   def set_phi ( self , * val ) :
       """set_phi (arg) sets the angle of view, measured from the positive z
       axis. If called with no argument, phi is set to 45 degrees.
       Otherwise it should be called with an integer argument (the angle
       in degrees)."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 or val [0] is None :
          narcisse.narsetar ( "height" , 30.0 )
       else :
          narcisse.narsetar ( "height" , 90.0 - val [0] )
       narcisse.narsetvals ( self._file_descr )
 
   def set_theta ( self , * val ) :
       """set_theta (arg) sets the angle of view, measured from the positive x
       axis. If called with no argument, theta is set to 45 degrees.
       Otherwise it should be called with an integer argument (the angle
       in degrees)."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 or val [0] is None :
          narcisse.narsetar ( "theta" , -45.0 )
       else :
          narcisse.narsetar ( "theta" , val [0] )
       narcisse.narsetvals ( self._file_descr )
 
   def set_roll ( self , * val ) :
       """set_roll (arg) is the angle of rotation around the line determined
       by set_phi and set_theta. If called with no argument, roll
       is set to zero degrees. Otherwise it should be called with
       an integer argument (the angle in degrees)."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 or val [0] is None :
          narcisse.narsetar ( "roll" , 0.0 )
       else :
          narcisse.narsetar ( "roll" , val [0] )
       narcisse.narsetvals ( self._file_descr )

   def set_gnomon (self, val) :
       """set_gnomon (val) does nothing in Narcisse."""
       return
 
   # set the distance of view
   def set_distance ( self , * val ) :
       """set_distance (arg) sets the distance of the view point from a 3d
       graph. If called with no argument, or 0.0, this distance is
       effectively infinite. Otherwise it should be called with a
       real number."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( val ) == 0 :
          narcisse.narsetar ( "distance" , 0. )
       else :
          narcisse.narsetar ( "distance" , val [0] )
       narcisse.narsetvals ( self._file_descr )
 
   # set whether a curve is drawn as a line, step, or one of a set
   # of symbols. val1 specifies the curve(s) and val2 the type(s).
   # If they're both scalars, set that one curve. If they are both
   # vectors, the shorter length will be used. If val1 is a vector
   # and val2 a scalar, then set all curves to the same type.
   # Note: narsetvals has to be called after each call to one of
   # the indexed routines, or else only the last one set is effective.
   # Bug or feature? I don't know.
   ###################NOTE:
   # Currently val2 is an integer value. Eventually I want to replace
   # it with a character designation.
   ###################
   def set_curve_type ( self , val1 , val2 ) :
       """set_curve_type (arg1, arg2) is used to determine how one or a family of
       curves is to be plotted. It must be called with two arguments.
       The first argument is an integer scalar or array Int giving
       the curve number(s) and the second is an integer scalar
       or array Int describing how the curve(s) should be graphed.
       Curves are numbered starting with 0. The allowed values for
       the second argument are: -1 (do not graph), 0 (normal graph),
       1 (graph as a step function), or else a number of options
       to draw the graph as a set of points denoted by symbols:
       2 (+), 3 (*), 4 (o) , 5 (x) , 6 (.)."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if type (val1) == IntType and type (val2) == IntType :
           narcisse.narsetaii ( "curve_type" , val2 , val1 )
           narcisse.narsetvals ( self._file_descr )
       elif type (val1) == ArrayType and val1.typecode () == Int \
                                   and type (val2) == IntType :
           for i in range (len (val2)) :
               narcisse.narsetaii ( "curve_type" , val2 , val1 [i] )
               narcisse.narsetvals ( self._file_descr )
       elif not is_scalar (val1) and not is_scalar (val2) :
           # both must be > 1 in length
           r = range (len (val1))
           if len (val2) < len (val1) :
               r = range (len (val2))
           for i in r :
               narcisse.narsetaii ( "curve_type" , val2 [i] , val1 [i] )
               narcisse.narsetvals ( self._file_descr )
       else :
           raise self.NarError, "bad arguments to curve_type."
 
   # set the curve color(s) for one or a set of curves.
   # val1 specifies the curve(s) and val2 the color(s).
   # If they're both scalars, set that one curve. If they are both
   # vectors, the shorter length will be used. If val1 is a vector
   # and val2 a scalar, then set all curves to the same color.
   ###################NOTE:
   # Currently val2 is an integer value. Eventually I want to replace
   # it with a character designation.
   ###################
   def set_curve_color ( self , val1 , val2 ) :
       """set_curve_color (arg1, arg2) is used to determine how one or a family of
       curves is to be colored. It must be called with two arguments.
       The first argument is an integer scalar or array Int giving
       the curve number(s) and the second is an integer scalar
       or array Int describing how the curve(s) should be colored.
       Curves are numbered starting with 0. The allowed values for
       the second argument are 0 to 63, denoting the index into
       the current palette."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if is_scalar (val1) and is_scalar (val2) :
           val2 = self._figure_color (val2)
           narcisse.narsetaii ( "curve_color" , val2 , val1 )
           narcisse.narsetvals ( self._file_descr )
       elif not is_scalar (val1) and len (val1) > 1 and is_scalar (val2) :
           val2 = self._figure_color (val2)
           for i in range (len (val2)) :
               narcisse.narsetaii ( "curve_color" , val2 , val1 [i] )
               narcisse.narsetvals ( self._file_descr )
       elif not is_scalar (val1) and not is_scalar (val2) :
           # both must be > 1 in length
           r = range (len (val1))
           if len (val2) < len (val1) :
               r = range (len (val2))
           for i in r :
               val2 [i] = self._figure_color (val2 [i])
               narcisse.narsetaii ( "curve_color" , val2 [i] , val1 [i] )
               narcisse.narsetvals ( self._file_descr )
       else :
           raise self.NarError , "bad parameters to set_curve_color."

   # set the label type for the curves. "end" and "box".
   def set_label_type ( self , val ) :
       """set_label_type (arg) determines whether curve labels will be attached
       to the ends of curves, or enclosed in a box. The allowed
       arguments are thus 'end' and 'box'."""
 
       if ( val == "end" ) :
          narcisse.narsetai ( "curve_label_type" , 0 )
       elif val == "box" :
          narcisse.narsetai ( "curve_label_type" , 1 )
       else :
          raise self.NarError ,\
                   "set_label_type: 'end' and 'box' are the allowed options."
 
   # set the curve label(s) for one or a set of curves.
   # val1 specifies the curve(s) and val2 the label(s).
   # If they're both scalars, set that one curve. If they are both
   # vectors, choose the shorter of the two lengths.
   def set_curve_label ( self , val1 , val2 ) :
       """set_curve_label (arg1, arg2) is used to label one or a set of curves.
       It requires two arguments. The first is an integer scalar or
       array specifying the curve numbers (starting with 1). The
       second is a scalar string or list of strings specifying
       the label(s) of the curve(s)."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if type (val1) == IntType and type (val2) == StringType :
           narcisse.narsetaci ( "curve_label" , val2 , val1 )
       elif type (val1) == ArrayType and val1.typecode () == Int and \
            type (val2) == ListType and type (val2 [0]) == StringType :
           r = range (len (val1))
           if len (val2) < len (val1) :
               r = range (len (val2))
           for i in r :
               narcisse.narsetaci ( "curve_label" , val2 [i] , val1 [i] )
               narcisse.narsetvals ( self._file_descr )
       else :
           print "Val1: " , `val1`
           print "Val2: " , `val2`
           raise self.NarError ,\
                "set_curve_label: arguments have inconsistent types or sizes."
 
   def set_xyequal (self) :
      """set_xyequal () sets a parameter that makes the axes equal scale."""
      self._xyequal = 1

   def reset_xyequal (self) :
      """set_xyequal () resets a parameter that makes the axes equal scale."""
      self._xyequal = 0

   narcisse_marks = { "+" : 2 , "*" : 3 , "o" : 4 , "x" : 5 , "." : 6 }
   narcisse_types = { "none" : -1 , "hide" : -1 , "line" : 0 ,
                      "normal" : 0 , "step" : 1 }

   def _figure_type ( self , crv ) :
      """_figure_type (crv) makes sure to return a valid type for a
      Narcisse curve.
      """
      if crv.hide :
         return -1
      if crv.marks and crv.marker is None :
         if (type (crv.line_type) == IntType and \
            crv.line_type == 0 or \
            type (crv.line_type) == StringType and \
            (crv.line_type == "line" or crv.line_type == "normal" or \
            crv.line_type == "solid")) :
            if crv.label == " " :
               crv.label = uppercase [self._next_letter]
               self._next_letter = (self._next_letter + 1) % 26
            return 0
      if crv.marks and crv.marker is not None :
         # if a marker is specified but a curve is desired, set the
         # curve's label to the marker
         if type (crv.marker) == StringType and \
            (type (crv.line_type) == IntType and \
            crv.line_type == 0 or \
            type (crv.line_type) == StringType and \
            (crv.line_type == "line" or crv.line_type == "normal" or \
            crv.line_type == "solid")) :
            if crv.label == " " :
               crv.label = crv.marker
            return 0
         if type (crv.marker) == IntType and 2 <= crv.marker <= 6 :
            return crv.marker
         if type (crv.marker) == StringType and \
            self.narcisse_marks.has_key (crv.marker) :
            return self.narcisse_marks [crv.marker]
      if type (crv.line_type) == IntType and -1 <= crv.line_type <= 6 :
         return crv.line_type
      if type (crv.line_type) == StringType and \
         self.narcisse_types.has_key (crv.line_type) :
         return self.narcisse_types [crv.line_type]
      return 0 # incomprehensible so draw a line
         
   def plot_object ( self , crv ) :

       """plot_object (crv) is a general purpose plotting routine. It should
       be called with one argument, a curve (all that Narcisse currently
       accepts). In the case of multiple objects on one graph, the
       first call only should be to this routine, subsequent calls to
       add_object. For Narcisse, plot_object and add_object accumulate
       information about the various curves, then send all the freight
       when send_graph is called.
       """
       try :
          dum = crv.type ()
       except :
          raise self.NarError , \
             "Unknown object has been sent to Narcisse."
       if dum != CurveType :
          raise self.NarError , \
             "Narcisse does not know how to graph a " + dum + "."
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       self._graph_type = 2
       # We compute new axis limits if user wants equal scales
       if self._xyequal :
          new_x_limits = minmax (crv.x)
          new_y_limits = minmax (crv.y)
          self._x_axis_min = new_x_limits [0]
          self._x_axis_max = new_x_limits [1]
          self._y_axis_min = new_y_limits [0]
          self._y_axis_max = new_y_limits [1]
       # start a list of attributes for curves
       self._types = [self._figure_type (crv)]
       self._labels = [crv.label]
       self._colors = [crv.color]
       self._axispref = [crv.axis]
       self._ylist = [crv.y]
       self._xlist = [crv.x]

   # add a curve to an existing plot
   def add_object ( self , crv ) :
       """add_object (crv) will add a curve to an existing graph.
       The curve's attributes are saved up; nothing is sent to Narcisse
       until send_graph is called.
       """
       try :
          dum = crv.type ()
       except :
          raise self.NarError , \
             "Unknown object has been sent to Narcisse."
       if dum != CurveType :
          raise self.NarError , \
             "Narcisse does not know how to graph a " + dum + "."
       if self._graph_type != 2 :
          raise self.NarError , \
             "plot_object must be called for the first curve on a graph."
       if self._xyequal :
          new_x_limits = minmax (crv.x)
          new_y_limits = minmax (crv.y)
          if self._x_axis_min > new_x_limits [0] :
             self._x_axis_min = new_x_limits [0]
          if self._x_axis_max < new_x_limits [1] :
             self._x_axis_max = new_x_limits [1]
          if self._y_axis_min > new_y_limits [0] :
             self._y_axis_min = new_y_limits [0]
          if self._y_axis_max < new_y_limits [1] :
             self._y_axis_max = new_y_limits [1]
       self._types.append (self._figure_type (crv))
       self._labels.append (crv.label)
       self._colors.append (crv.color)
       self._ylist.append (crv.y)
       self._xlist.append (crv.x)
       self._axispref.append (crv.axis)

   def _send_2d_info ( self ) :
       """_send_2d_info ( ) sends the accumulated curve information
       out to Narcisse.
       """
       n = len (self._ylist)
       if n <= 0 :
          raise self.NarError, \
             "There is nothing to graph!"
       elif n == 1 :
          arg1 = 0
          arg2t = self._types [0]
          arg2c = self._colors [0]
          arg2l = self._labels [0]
       else :
          arg1 = arange (n, typecode = Int)
          arg2t = self._types
          arg2c = self._colors
          arg2l = self._labels
       y = self._ylist [0].astype (NarFloat)
       x = self._xlist [0].astype (NarFloat)
       narcisse.nar1curve (self._file_descr, y, x)
       self.set_y_axis (0, self._axispref [0])
       for i in range (1, n) :
          y = self._ylist [i].astype (NarFloat)
          x = self._xlist [i].astype (NarFloat)
          narcisse.narsetai ( "option_2d_concatenate" , 1 )
          narcisse.narsetvals ( self._file_descr )
          narcisse.nar1curve (self._file_descr, y, x)
          narcisse.narsetai ( "option_2d_concatenate" , 0 )
          narcisse.narsetvals ( self._file_descr )
          self.set_y_axis (i, self._axispref [i])
       self.set_curve_type (arg1, arg2t)
       self.set_curve_color (arg1, arg2c)
       self.set_curve_label (arg1, arg2l)

   def plot_text ( self ) :
       "plot_text does nothing in Narcisse."
       return

   def set_text ( self , txt , n ) :
       "set_text (str, ix) sets the ix'th text to str."
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if txt == " " : txt = ""
       narcisse.narsetaci ( "text_value" , txt , n )
       narcisse.narsetvals ( self._file_descr )

   def clear_text (self) :
       "clear_text ( ) sets the number of texts to 0."
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       narcisse.narsetaci ( "text_value" , "" , 0 )
       narcisse.narsetai ( "text_number" , 0 )
       narcisse.narsetvals ( self._file_descr )

   def set_text_color ( self , txt , n ) :
       """set_text_color (col, ix) sets the ix'th text color to col,
       which is a number between 0 and 63 associated with a color table."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       txt = self._figure_color (txt)
       narcisse.narsetaii ( "text_color" , txt , n )
       narcisse.narsetvals ( self._file_descr )

   def set_text_size ( self , txt , n ) :
       """set_text_size (sz, ix) sets the ix'th text size to sz.
       sz represents essentially the number of characters that
       will fill the width of the graphics screen, so the larger
       the number, the smaller the text."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       narcisse.narsetaii ( "text_size" , txt , n )
       narcisse.narsetvals ( self._file_descr )

   def set_text_pos ( self , x , y , ix ) :
       """set_text_pos (x, y, ix) positions the ix'th text at (x, y),
       which are real numbers between 0 and 1 giving relative
       position in the graphics window."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       narcisse.narsetari ("text_pos_x", x, ix)
       narcisse.narsetari ("text_pos_y", y, ix)
       narcisse.narsetvals ( self._file_descr )


   # Here's the grandaddy of them all, a perfectly general surface
   # plotting routine. Note that it passes a lot of information
   # to narcissemodule for error checking.
   ###############################################################
   # Eventually these routines should probably all be rewritten
   # to accept numerical sequences of any kind as inputs,
   # convert them to array types as appropriate, check for
   # appropriate dimensions, etc. The problem is that anybody
   # can call the low level routines directly from Python, so they
   # need to do error checking anyhow, just in case.
   ###############################################################
   def plot_surface ( self , arg1 , * args2 ) :
       """plot_surface (args) is a general-purpose 3d/4d plotting routine.
       The type of plot depends on the numbers and types of the
       arguments (which all must be of type array NarFloat except for the
       cell information for unstructured grids). Here we go:
          1. single argument, two dimensional array z: Plot z as a
             surface versus equally spaced x and y coordinates.
          2. three arguments, two vectors x and y and a two dimensional
             matrix z: plot z as a surface versus the given x and y.
          3. three arguments, matrices x, y, and z (whose dimensions
             must match): plot z as a surface versus the given x and y.
          4. four arguments, two vectors x and y and two two dimensional
             matrices z and c: plot z as a surface versus the given x
             and y; use the variable c to color the graph.
          5. four arguments, matrices x, y, z, and c (whose dimensions
             must match): plot z as a surface versus the given x and y;
             use the variable c to color the graph.
          6. four arguments, three vectors x, y, and z specifying a
             structured grid, and a three-dimensional array c defined
             at each grid point: draw the grid and color according to
             the variable c.
          7. six arguments, vectors x, y, and z of the same size
             specifying a nonstructured grid, and c of the same size
             specifying a value at each point; cd, an integer vector
             specifying connectivity (see the Narcisse manual for
             details), and nc an integer specifying the number of
             cells in the grid, draw the nonstructured grid and color
             according to the variable c."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if len ( args2 ) == 0 :
          narcisse.narsurf ( self._file_descr , arg1.astype (NarFloat) )
          return
       if len ( args2 ) == 2 or len ( args2 ) > 2 and args2 [2] is None :
          x = arg1.astype (NarFloat)
          y = args2 [0].astype (NarFloat)
          z = args2 [1].astype (NarFloat)
          if len (x.shape) == 1 and len (y.shape) == 1 :
             narcisse.nar3drect ( self._file_descr , x , y , z )
             return
          else :
             narcisse.nar3dtetra ( self._file_descr , x , y , z )
             return
       if len ( args2 ) == 3 :
          x = arg1.astype (NarFloat)
          y = args2 [0].astype (NarFloat)
          z = args2 [1].astype (NarFloat)
          c = args2 [2].astype (NarFloat)
          if ( len ( z.shape ) == 2 ) :
             if len ( x.shape ) == 1 :
                narcisse.nar4drect ( self._file_descr , x , y , z , c )
                return
             else :
                narcisse.nar4dtetra ( self._file_descr , x , y , z , c )
                return
          else :
             narcisse.narstructmesh ( self._file_descr , x , y , z , c )
             return
       if len ( args2 ) == 5 :
          x = arg1.astype (NarFloat)
          y = args2 [0].astype (NarFloat)
          z = args2 [1].astype (NarFloat)
          c = args2 [2].astype (NarFloat)
          cd = args2 [3].astype (Int)
          nc = args2 [4]
          narcisse.narnonstructmesh ( self._file_descr , x , y , z , c , cd , nc)
          return
       else :
          n=1+len (args2)
          raise self.NarError ,\
                   "plot_surface: inappropriate number of arguments: " + `n`

   def set_palette (self, col) :
       """set_palette (col) sets the color palette to col. The first
       entry in col tells how long the rest of the array is; then
       there are col [0] / 3 entries for red, followed by the same
       number of greens, followed by the same number of blues.
       """
       for i in range (col [0]) :
           narcisse.narsetaii ("parameter_map_pal", col [i + 1], i)
       narcisse.narsetai ("parameter_map", -1)
       narcisse.narsetvals ( self._file_descr )

   def set_no_concat ( self ) : #called by a graphics object initially
       "set_no_concat () turns off the 2d and 3d concatenation mode."
       narcisse.narsetai ("option_3d_concatenate", 0)
       narcisse.narsetai ("option_2d_concatenate", 0)
       narcisse.narsetvals ( self._file_descr )

   # add a surface to an existing plot
   def add_surface ( self , arg1 , * args2 ) :
       """add_surface (args) will add one or more surfaces to an existing graph.
       Its arguments are the same form as the arguments of
       plot_surface. See plot_surface documentation for details."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       narcisse.narsetai ("option_3d_concatenate" , 1 )
       narcisse.narsetvals ( self._file_descr )
       if len (args2) == 0 :
          self.plot_surface ( arg1 )
       elif len (args2) == 2 :
          self.plot_surface ( arg1 , args2 [0] , args2 [1] )
       elif len (args2) == 3 :
          self.plot_surface ( arg1 , args2 [0] , args2 [1] , args2 [2] )
       elif len (args2) == 5 :
          self.plot_surface ( arg1 , args2 [0] , args2 [1] , args2 [2] , args2 [3] , args2 [4] )
       else :
          raise self.NarError , "add_surface: inappropriate number of arguments ("\
                            + `len (args2)` + ")."
       narcisse.narsetai ("option_3d_concatenate" , 0 )
       narcisse.narsetvals ( self._file_descr )

   # routine to freeze the graph
   # i. e., arguments and graphs sent will not be plotted until
   # send_graph is called.
   def freeze_graph ( self ) :
       """freeze_graph () keeps a graph from being plotted until
       send_graph () is called."""

       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if not self._frozen :
          narcisse.narsetai ( "plot_now" , 0 )
          narcisse.narsetvals ( self._file_descr )
          self._frozen = 1


   # routine to release the graph
   # The current graph will be plotted and any arguments will
   # be sent. if _freeze_each has been set, then the next graph
   # will be _frozen too.
   def send_graph ( self, graf ) :
       """send_graph () causes a plot that has been accumulated
       after freeze_graph () was called, to be plotted."""
 
       if not self._file_open : raise self.ConnectException , \
          "You are not connected to Narcisse."
       if self._graph_type == 0 :
          raise self.NarError, \
             "There is nothing to graph!"
       if graf.type () == Graph3dType :
          self._dims = 3
       else :
          self.dims = 2
       self._send_axes_limits ( )
       if self._graph_type == 2 :
          self._send_2d_info ( )
       if self._frozen :
          self._frozen = 0
          narcisse.narsetai ( "plot_now" , 1 )
       narcisse.narsetvals ( self._file_descr )
       if self._freeze_each :
          self.freeze_graph ( )

   def set_freeze_each ( self , val ) :
       """set_freeze_each ( fe ) tells whether or not to re-freeze the
       graphics after each send_graph call. 1 to re-freeze, 0 not to."""
       self._freeze_each = val

   def send_generics (self, graf) :
       """send_generics ( graf ) sets up all the things that are generic to any
       graph. It does not actually do any plotting yet.
       """
       self.set_titles ( graf._titles )
       self.set_title_colors ( graf._title_colors )
       # The following line is redundant for Gist. Not sure about Narcisse.
       # self._plot_titles ( )
       self.set_grid_type ( graf._grid_type )
       self.clear_text ( )
       if is_scalar ( graf._text ) :
          if ( graf._text != "" and graf._text != " ") :
             self.set_text ( graf._text , 0 )
       else :
          for i in range ( len ( graf._text ) ) :
             self.set_text ( graf._text [i] , i )
       if is_scalar ( graf._text_color ) :
          self.set_text_color ( graf._text_color , 0 )
       else :
          for i in range ( len ( graf._text_color ) ) :
             self.set_text_color ( graf._text_color [i] , i )
       if is_scalar ( graf._text_size ) :
          self.set_text_size ( graf._text_size , 0 )
       else :
          for i in range ( len ( graf._text_size ) ) :
              self.set_text_size ( graf._text_size [i] , i )
       if is_scalar ( graf._tosys ) :
          self.set_tosys ( graf._tosys , 0 )
       else :
          for i in range ( len ( graf._tosys ) ) :
              self.set_tosys ( graf._tosys [i] , i )
       if is_scalar ( graf._text_pos ) :
          raise graf._GraphSpecError , \
             "Text position must be a point or an array of points."
       if len ( shape ( graf._text_pos )) == 1:
          self.set_text_pos ( graf._text_pos [0] , graf._text_pos [1] , 0 )
       else :
          for i in range (shape (graf._text_pos) [0] ) :
             self.set_text_pos ( graf._text_pos [i][0] ,
                               graf._text_pos [i][1] , i )

   # The following is the equivalent of the Gist split palette.
   # The lower half is the rainbow, the upper half is greyscale.
   split_palette = array ([162, # The last 54 colors of the palette
                           #27 reds, 27 greys:
                           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                           19, 67, 115, 163, 211,
                           255, 255, 255, 255, 255, 255, 
                           255, 255, 255, 255, 255,
                           0, 9, 19,  29,  39,  49,  58,  68,
                           78,  88,  98, 107, 117, 127, 137,
                           147, 156, 166, 176, 186, 196, 205,
                           215, 225, 235, 245, 255,
                           #27, greens, 27 greys:
                           24, 72, 120, 168, 216, 
                           255, 255, 255, 255, 255, 255,
                           255, 255, 255, 255, 255,
                           226, 178, 129, 81, 33, 0, 0, 0, 0, 0, 0,
                           0, 9, 19,  29,  39,  49,  58,  68,
                           78,  88,  98, 107, 117, 127, 137,
                           147, 156, 166, 176, 186, 196, 205,
                           215, 225, 235, 245, 255,
                           #27 blues, 27 greys:
                           255, 255, 255, 255, 255,
                           245, 197, 149, 101, 52, 4, 
                           0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
                           14, 62, 110, 158, 206, 255,
                           0, 9, 19,  29,  39,  49,  58,  68,
                           78,  88,  98, 107, 117, 127, 137,
                           147, 156, 166, 176, 186, 196, 205,
                           215, 225, 235, 245, 255
                          ], Int)

   def do_generic (self, graf) :
       self.set_freeze_each (1)
       self.freeze_graph ( ) #freeze everything until entire graph is sent
       self.set_no_concat ( )
       self.send_generics ( graf )
       self.set_axis_labels ( graf._axis_labels )
       self.set_x_axis_limits (graf._axis_limits [0][0],
                               graf._axis_limits [0][1])
       self.set_y_axis_limits (graf._axis_limits [1][0],
                               graf._axis_limits [1][1])
       if self._dims == 2 :
          self.set_yr_axis_limits (graf._axis_limits [2][0],
                                  graf._axis_limits [2][1])
       elif self._dims == 3 :
          self.set_z_axis_limits (graf._axis_limits [2][0],
                                  graf._axis_limits [2][1])
          self.set_c_axis_limits (graf._axis_limits [3][0],
                                  graf._axis_limits [3][1])
          self.set_yr_axis_limits (graf._axis_limits [4][0],
                                  graf._axis_limits [4][1])
       if self._dims == 2:
          for i in range (graf._no_of_axes) :
             if graf._axis_scales [i] == "lin" :
                self.set_axis_lin (graf._axes [i])
             elif graf._axis_scales [i] == "log" :
                self.set_axis_log (graf._axes [i])
             else :
                raise graf._AxisSpecError , \
                   graf._axis_scales [i] + " is not a valid axis scale."
       elif self._dims == 3:
           sc = graf._axis_scales
           if is_scalar (sc) :
              sc = [sc] + ["lin", "lin", "lin", "lin"]
           else :
              for i in range (5 - no_of_dims (sc)) :
                 sc = sc + ["lin"]
           for i in range (5) :
              if sc [i] == "log" :
                 self.set_axis_log (graf._axes [i])
              else : # anything else will be lin
                 self.set_axis_lin (graf._axes [i])
       try:
           no_color = os.environ["NO_COLOR"]
       except KeyError:
           no_color = 0
       if no_color == 0 or no_color == "no" or no_color == "n" :
           self.set_color_card (graf._color_card , 1)
       if self._dims == 3:
           self.set_phi ( graf._phi )
           self.set_theta ( graf._theta )
           self.set_roll ( graf._roll )
       return

   def quick_plot (self, graf) :
       "quick_plot (graf) plots without recomputing."
       if graf.type () == Graph2dType :
          self._dims = 2
       else :
          self._dims = 3
       self.do_generic (graf)
       if hasattr (graf, "n") and self._dims == 3 :
          if graf.opt_3d_change :
             self.set_3d_options ( graf._color_bar,
                                   graf._color_bar_pos,
                                   graf._s [graf.n - 1].opt_3d )
          if graf.mask_change :
             self.set_mask ( graf._s [graf.n - 1].mask )
          if graf.mesh_type_change :
             self.set_3d_grid_type ( graf._s [graf.n - 1].mesh_type )
       if hasattr (graf, "n") and self._dims == 2 :
          if graf.type_change :
             self.set_curve_type ( graf.n - 1 , graf._c[graf.n - 1].line_type )
          if graf.color_change :
             self.set_curve_color ( graf.n - 1 , graf._c[graf.n - 1].color )
          if graf.label_change :
             self.set_curve_label ( graf.n - 1 , graf._c[graf.n - 1].label )
       if graf._label_type != " " :
          self.set_label_type ( graf._label_type )
       if (graf._sync) :
          self.synchronize ( )
       self.send_graph (graf)

   def plot2d (self, graf) :
       """A Graph2d object calls plot2d with itself as argument.
       plot2d sorts out everything for the graph and then does the plot.
       The bulk of this work used to be done in Graph and Graph2d,
       but I decided it was too graphics-dependent.
       """
       self._dims = 2
       # (1) Do graph-generic stuff first
       self.do_generic (graf)
       # (2) Do the specifically 2d stuff
       sc = graf._axis_scales
       if graf._xyequal :
          self.set_xyequal ( )
       else :
          self.reset_xyequal ( )
       if is_scalar (sc) :
          if sc == "linlin" or sc == "lin" :
             self.set_linlin ( )
          elif sc == "linlog" :
             self.set_linlog ( )
          elif sc == "loglin" or sc == "log" :
             self.set_loglin ( )
          elif sc == "loglog" :
             self.set_loglog ( )
       else :
          if len (sc) == 1 :
             sc = sc + ["lin", "lin"]
          elif len (sc) == 2 :
             sc = sc + ["lin"]
          for n in range (3) :
             if sc [n] == "log" :
                self.set_axis_log (graf._axes [n])
             else :
                self.set_axis_lin (graf._axes [n])
       for i in range ( graf._c_ln ) :
          if i == 0 :
             self.plot_object ( graf._c [i] )
          else :
             self.add_object ( graf._c [i] )
       self.plot_text ( )
       # Finally do the graph
       if (graf._sync) :
          self.synchronize ( )
       self.send_graph (graf)

   def split_bytscl (self, val, top) :
       """
       split_bytscl (val, top) scales the values in val to the top
       half of the palette (values 27 to 53) if top = 1, and to
       the bottom half (values 0 to 26) if top = 0.
       """
       retval = ( (val - min (val)).astype(Float) /
                  max( (val - min (val)).astype(Float)*26. +
                  0.5)).astype (Int) + top * 26
       

   def plot3d (self, graf) :
       """plot3d (graf) plots a 3d graph object.
       """
       self._dims = 3
       # (1) Do graph-generic stuff first
       self.do_generic (graf)

       self.set_phi ( graf._phi )
       self.set_theta ( graf._theta )
       self.set_roll ( graf._roll )
       self.set_distance ( graf._distance )
       n = graf._s_ln
       if n > 1 and graf._connect :
          self.set_connect ( 1)
       else :
          self.set_connect ( 0)
       if graf._s [0].type () == Slice3dType :
          # This is a graph of one or more isosurface and/or plane slices.
          # Basically, we just need to put the vertices and cell
          # information into the form recognized by SpxNonStruct4d.
          # For now, Narcisse will not allow slices to be combined
          # with other surfaces.
          # send out surface characteristics, then each surface
          self.set_link ( 0 )
          self.set_mask ( graf.mask )
          self.set_3d_options ( graf._color_bar,
                                graf._color_bar_pos,
                                graf._s [0].opt_3d )
          self.set_3d_grid_type ( graf._s[0].mesh_type )
          self.set_z_c_switch ( graf._s[0].z_c_switch )
          self.set_z_contours ( graf._s[0].z_contours_scale )
          self.set_c_contours ( graf._s[0].c_contours_scale )
          if graf._s[0].z_contours_array is None :
             if graf._s[0].number_of_z_contours is None :
                self.set_z_contours (20)
             else :
                self.set_z_contours (graf._s[0].number_of_z_contours)
          else :
             self.set_z_contours ( graf._s[0].z_contours_array )
          if graf._s[0].c_contours_array is None :
             if graf._s[0].number_of_c_contours is None :
                self.set_c_contours (20)
             else :
                self.set_c_contours (graf._s[0].number_of_c_contours)
          else :
             self.set_c_contours ( graf._s[0].c_contours_array )

          isosurfaces_present = 0
          self._graph_type = 4
          for i in range (graf._s_ln) :
             if graf._s [i].type () == Slice3dType :
                if graf._s [i].plane is None and graf._s [i].iso is not None :
                   isosurfaces_present = 1
             else :
                raise self.NarError, \
                   "If one component is a Slice, all must be."
          for i in range (graf._s_ln) :
             s = graf._s [i]
             opt_3d = s.opt_3d
             if type (opt_3d) != ListType :
                opt_3d = [opt_3d]
             if i == 0 :
                nv = s.nv
                x = s.xyzv [:, 0]
                y = s.xyzv [:, 1]
                z = s.xyzv [:, 2]
                if (max (abs (x)) < 10.e-30) :
                   x [0: len(x)] = 0.
                if (max (abs (y)) < 10.e-30) :
                   y [0: len(y)] = 0.
                if (max (abs (z)) < 10.e-30) :
                   z [0: len(z)] = 0.
                if not isosurfaces_present or s.iso is None and \
                   s.plane is None :
                   if "i3" in opt_3d or "s3" in opt_3d or \
                      "w3" in opt_3d or "f3" in opt_3d :
                      val = z
                   else :
                      val = s.val
                elif s.plane is not None :
                   if len(s.val) == len (s.nv) :
                      val = to_corners (s.val, s.nv, sum (s.nv))
                   else :
                      val = s.val
                else :
                   val = ones (sum (s.nv), Float) * s.iso
             else :
                nv = concatenate ( (nv, s.nv))
                x = concatenate ( (x, s.xyzv [:, 0]))
                y = concatenate ( (y, s.xyzv [:, 1]))
                z = concatenate ( (z, s.xyzv [:, 2]))
                if not isosurfaces_present or s.iso is None and \
                   s.plane is None :
                   val = concatenate ( (val, s.val))
                elif s.plane is not None :
                   if len(s.val) == len (s.nv) :
                      val = concatenate ( (val,
                         to_corners (s.val, s.nv, sum (s.nv))))
                   else :
                      val = concatenate ( (val, s.val))
                else :
                   val = concatenate ( (val, ones (sum (s.nv), Float) * s.iso))
          nc = len (nv)
          nv = concatenate ( (cumsum (nv), arange (len (x))))
##        if isosurfaces_present :
##           self.set_palette (self.split_palette)
          self.set_color_card (graf._color_card)
          self.plot_surface (x, y, z, val, nv, nc)
          if (graf._sync) :
             self.synchronize ( )
          self.plot_text ( )
          self.send_graph (graf)
       elif graf._link :
          # got to send out one surface and its characteristics at a time
          self.set_link ( 1 )
          for i in range ( n ) :
             # Do not replot axes for subsequent components
             if i > 0 : self.set_grid_type ("none")
             self.set_mask ( graf._s[i].mask )
             self.set_3d_options ( graf._color_bar,
                                   graf._color_bar_pos,
                                   graf._s[i].opt_3d )
             self.set_3d_grid_type ( graf._s[i].mesh_type )
             if graf._s[i].z_c_switch :
                self.set_z_c_switch ( 1 )
             else :
                self.set_z_c_switch ( 0 )
             self.set_z_contours ( graf._s[i].z_contours_scale )
             self.set_c_contours ( graf._s[i].c_contours_scale )
             if graf._s[i].z_contours_array is None :
                if graf._s[i].number_of_z_contours is None :
                   self.set_z_contours (20)
                else :
                   self.set_z_contours (graf._s[i].number_of_z_contours)
             else :
                self.set_z_contours ( graf._s[i].z_contours_array )
             if graf._s[i].c_contours_array is None :
                if graf._s[i].number_of_c_contours is None :
                   self.set_c_contours (20)
                else :
                   self.set_c_contours (graf._s[i].number_of_c_contours)
             else :
                self.set_c_contours ( graf._s[i].c_contours_array )
             # always send coordinates of linked surfaces
             if not hasattr (graf._s[i], "x") or \
                graf._s[i].x is None : # just graphing z
                self._graph_type = 3
                self.plot_surface ( array ( graf._s[i].z, Float))
             elif graf._s[i].c is None : #surface alone
                self._graph_type = 3
                self.plot_surface ( array ( graf._s[i].x, Float),
                                 array ( graf._s[i].y, Float),
                                 array ( graf._s[i].z, Float))
             else : # 4d plot (surface or structured mesh plot)
                self._graph_type = 4
                if graf._s[i].type () == SurfaceType or \
                   graf._s[i].structured :
                   # (surface or structured mesh plot)
                   self.plot_surface ( array ( graf._s[i].x, Float),
                                    array ( graf._s[i].y, Float),
                                    array ( graf._s[i].z, Float),
                                    array ( graf._s[i].c, Float))
                else : # Nonstructured mesh
                   graf._s[i].create_Narcisse_format ()
                   self.plot_surface ( array ( graf._s[i].x, Float),
                       array ( graf._s[i].y, Float),
                       array ( graf._s[i].z, Float),
                       array ( graf._s[i].c, Float),
                       array ( graf._s[i].cell_descr, Int ),
                       graf._s[i].number_of_cells)
             if (graf._sync) :
                self.synchronize ( )
             self.send_graph (graf)
             if i == 0 :
                self.plot_text ( )
                self.set_link (0)
       else : # not graf._link
          # send out surface characteristics, then each surface
          self.set_link ( 0 )
          self.set_mask ( graf._s[n - 1].mask )
          self.set_3d_options ( graf._color_bar,
                                graf._color_bar_pos,
                                graf._s[n - 1].opt_3d )
          self.set_3d_grid_type ( graf._s[n - 1].mesh_type )
          self.set_z_c_switch ( graf._s[n - 1].z_c_switch )
          self.set_z_contours ( graf._s[n - 1].z_contours_scale )
          self.set_c_contours ( graf._s[n - 1].c_contours_scale )
          if graf._s[n - 1].z_contours_array is None :
             if graf._s[n - 1].number_of_z_contours is None :
                self.set_z_contours (20)
             else :
                self.set_z_contours (graf._s[n - 1].number_of_z_contours)
          else :
             self.set_z_contours ( graf._s[n - 1].z_contours_array )
          if graf._s[n - 1].c_contours_array is None :
             if graf._s[n - 1].number_of_c_contours is None :
                self.set_c_contours (20)
             else :
                self.set_c_contours (graf._s[n - 1].number_of_c_contours)
          else :
             self.set_c_contours ( graf._s[n - 1].c_contours_array )
          if graf._send_coordinates :
             for i in range ( n ) : # now send out surfaces
                if not hasattr (graf._s[i], "x") or \
                   graf._s[i].x is None : # just graphing z
                   self._graph_type = 3
                   if i == 0 :
                      self.plot_surface (array (graf._s[i].z, Float))
                   else :
                      self.add_surface (array (graf._s[i].z, Float))
                elif graf._s[i].c is None : # 3d plot
                   self._graph_type = 3
                   if i == 0 :
                      self.plot_surface ( array ( graf._s[i].x, Float),
                                       array ( graf._s[i].y, Float),
                                       array ( graf._s[i].z, Float))
                   else :
                      self.add_surface ( array ( graf._s[i].x, Float),
                                       array ( graf._s[i].y, Float),
                                       array ( graf._s[i].z, Float))
                else : # 4d plot (surface or structured mesh plot)
                   self._graph_type = 4
                   if graf._s[i].type () == SurfaceType or \
                      graf._s[i].structured :
                      if i == 0 :
                         self.plot_surface ( array ( graf._s[i].x, Float),
                                          array ( graf._s[i].y, Float),
                                          array ( graf._s[i].z, Float),
                                          array ( graf._s[i].c, Float))
                      else :
                         self.add_surface ( array ( graf._s[i].x, Float),
                                          array ( graf._s[i].y, Float),
                                          array ( graf._s[i].z, Float),
                                          array ( graf._s[i].c, Float))
                   else : # Nonstructured mesh plot
                      graf._s[i].create_Narcisse_format ()
                      if i == 0 :
                         self.plot_surface ( array ( graf._s[i].x, Float),
                             array ( graf._s[i].y, Float),
                             array ( graf._s[i].z, Float),
                             array ( graf._s[i].c, Float),
                             array ( graf._s[i].cell_descr, Int),
                             graf._s[i].number_of_cells )
                      else :
                         self.add_surface ( array ( graf._s[i].x, Float),
                             array ( graf._s[i].y, Float),
                             array ( graf._s[i].z, Float),
                             array ( graf._s[i].c, Float),
                             array ( graf._s[i].cell_descr, Int),
                             graf._s[i].number_of_cells )
          if (graf._sync) :
             self.synchronize ( )
          self.plot_text ( )
          self.send_graph (graf)

   def move_light_source (self, graf, angle, nframes) :
      raise self.NarError, \
         "Sorry, Narcisse does not yet support a moving light source."

   def rotate_graph (self, axis, angle, nframes) :
       # In Narcisse, only the angle counts.
       narcisse.narsetai ("animation_number", nframes)
       angle = angle * 180. / pi
       narcisse.narsetai ("animation_azimuth", angle)
       narcisse.narsetai ("animation_elevation", angle)
       if self._frozen :
          self._frozen = 0
          narcisse.narsetai ( "plot_now" , 1 )
       narcisse.narsetvals ( self._file_descr )
       if self._freeze_each :
          self.freeze_graph ( )