1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
# Copyright (c) 1996, 1997, The Regents of the University of California.
# All rights reserved. See Legal.htm for full text and disclaimer.
from Numeric import *
from scipy_base.fastumath import *
from MLab import rand
from surface import *
from graph3d import *
from mesh3d import *
def paws ( ) :
i = raw_input ("Type in any string to continue; ^C to return to prompt. ")
return
GraphicsError = "GraphicsError"
import os
try:
graphics = os.environ["PYGRAPH"]
except KeyError:
graphics = "Gist"
if graphics [0:3] == "Nar" :
import NarPlotter
elif graphics == "Gist" :
import GistPlotter
else :
raise GraphicsError , \
graphics + " is an unknown graphics package. Check PYGRAPH " + \
"environment variable."
if graphics [0:3] == "Nar" :
print "This is a test of the Python interface to the Limeil Lab graphics"
print "package, Narcisse. You need Narcisse to be running. Fire it up by"
print "doing setenv PORT_SERVEUR 0, typing /dist/basis/Narcisse/bin/Narcisse &,"
print "and then do another senetv PORT_SERVEUR to the port number which"
print "appears in the Narcisse GUI."
else :
print "This is a test of the Python interface to the Gist graphics package."
print "Invoke function demo () to run."
def demo () :
vsf = 0.
c = 1
s = 1000.
kmax = 25
lmax = 35
# The following computations define an interesting 3d surface.
xr = multiply.outer (
arange (1, kmax + 1, typecode = Float), ones (lmax, Float))
yr = multiply.outer (
ones (kmax, Float), arange (1, lmax + 1, typecode = Float))
zt = 5. + xr + .2 * rand (kmax, lmax) # ranf (xr)
rt = 100. + yr + .2 * rand (kmax, lmax) # ranf (yr)
z = s * (rt + zt)
z = z + .02 * z * rand (kmax, lmax) # ranf (z)
ut = rt / sqrt (rt ** 2 + zt ** 2)
vt = zt / sqrt (rt ** 2 + zt ** 2)
ireg = multiply.outer ( ones (kmax), ones (lmax))
ireg [0:1, 0:lmax] = 0
ireg [0:kmax, 0:1] = 0
ireg [1:15, 7:12] = 2
ireg [1:15, 12:lmax] = 3
ireg [3:7, 3:7] = 0
freg = ireg + .2 * (1. - rand (kmax, lmax)) # ranf (ireg))
freg = array (freg, Float)
#rt [4:6, 4:6] = -1.e8
z [3:10, 3:12] = z [3:10, 3:12] * .9
z [5, 5] = z [5, 5] * .9
z [17:22, 15:18] = z [17:22, 15:18] * 1.2
z [16, 16] = z [16, 16] * 1.1
# Sombrero function
x = arange (-20, 21, typecode = Float)
y = arange (-20, 21, typecode = Float)
z = zeros ( (41, 41), Float)
for i in range (0, 41):
for j in range (0, 41):
r = sqrt (x [i] ** 2 + y [j] ** 2) + 1e-6
z [i, j] = sin (r) / r
s1 = Surface (z = z, opt_3d = "s3", mask = "max")
g1 = Graph3d ( s1 , titles = "Sombrero function",
y_factor = 2.0) #, phi = 30., theta = 45.)
g1.plot ( )
paws ( )
s1.set (opt_3d = "w3")
g1.plot ()
paws ( )
foo = zeros ( (kmax, lmax), Float)
for k in range (kmax) :
foo [k, 0:lmax] = log (arange (1, lmax + 1, typecode = Float))
xxx = exp (k / 5.)
for l in range (lmax) :
foo [k, l] = xxx * foo [k, l]
s1.new (x = xr, y = yr, z = foo, opt_3d = "w3")
g1.change ( titles = "Exponential surface, z logarithmic",
# phi = 30., theta = 45.,
axis_scales = ["lin", "lin", "log"],
z_contours_scale = "log", y_factor = 1.0)
g1.plot ( )
paws ( )
xr = array (xr)
yr = array (yr)
zz = xr ** 2 + yr ** 2
g1.change ( titles = "Exponential surface, z linear", phi = 45.,
axis_scales = ["lin", "lin", "lin"] )
g1.plot ( )
paws ( )
s1.new (z = zz, opt_3d = "w3")
g1.change ( z_contours_scale = "lin",
titles = "Graph of xr**2 + yr**2", phi = 35.)
g1.plot ( )
paws ( )
zs = zeros ( (50, 25), Float)
xs = zeros ( (50, 25), Float)
ys = zeros ( (50, 25), Float)
ctheta = zeros (50, Float)
stheta = zeros (50, Float)
cphi = zeros (25, Float)
sphi = zeros (25, Float)
pi = 3.1415926535
for i in range (50):
ctheta [i] = cos (2. * i / 49. * pi)
stheta [i] = sin (2. * i / 49. * pi)
for i in range (25):
cphi [i] = cos (pi * i / 24.)
sphi [i] = sin (pi * i / 24.)
for i in range (25):
zs [0:50, i:i + 1] = cphi [i]
for j in range (50):
xs [j, i] = sphi [i] * ctheta [j]
ys [j, i] = sphi [i] * stheta [j]
hx = xs / 1.6
hy = ys / 1.6
hz = zs / 1.6
# Plot a sphere with a random distribution of colors
s1.new (mask = "sort", opt_3d = "s4", x = hx, y = hy, z = zs,
c = rand (50, 25)) # ranf (zs))
g1.replace ( 1, s1 )
g1.change_plot (titles = "Randomly colored sphere", send = 1)
paws ()
s1 = Surface (mask = "sort", opt_3d = "s4", x = hx, y = hy,
z = zs, c = rand (50, 25))
##m1 = Mesh3d (color_card = "random", opt_3d = "f4", mask = "min",
## x = array ( [0.5, 1.2, 1.4, 1.05], Float),
## y = array ( [1.2, 0.5, 1.4, 1.05], Float),
## z = array ( [0., 0., 0., 1.2], Float),
## c = array ( [0.4, 0.6, 0.6, 0.6], Float),
## avs = 1, tet = [ 1, array ([[3,0,1,2]],Int) ])
m1 = Slice (array ( [3, 3, 3, 3], Int),
array ( [
[0.5, 1.2, 0.], [1.2, 0.5, 0.], [1.4, 1.4, 0.],
[0.5, 1.2, 0.], [1.4, 1.4, 0.], [1.05, 1.05, 1.2],
[0.5, 1.2, 0.], [1.05, 1.05, 1.2], [1.2, 0.5, 0.],
[1.2, 0.5, 0.], [1.05, 1.05, 1.2], [1.4, 1.4, 0.]
] ), array ( [0.4, 0.5, 0.6, 0.7], Float))
g1.new ([s1, m1], link = 1,
titles = "Randomly colored sphere and solid tetrahedron",
axis_limits = [[-0.62, 1.4],
[-0.62, 1.4], [-1.0, 1.5]],
send = 1, y_factor = 2.0) # phi = 55, theta = 30,
g1.plot ( )
#pl.set_color_card (8) #random
#pl.set_3d_options ("f4") #flat 4d
#pl.set_grid_type ("none") #don't redraw axes
# Note to myself: When the mesh plotter is done, use it for the
# following. Python should never call a plotter directly.
#pl.plot_surface (array ( [0.5, 1.2, 1.4, 1.05], Float),
# array ( [1.2, 0.5, 1.4, 1.05], Float),
# array ( [0., 0., 0., 1.2], Float),
# array ( [0.4, 0.6, 0.6, 0.6], Float),
# array ( [3, 6, 9, 12, 1, 2, 3, 0, 2,
# 3, 0, 1, 3, 0, 1, 2], Int), 4)
#pl.send_graph ()
paws ()
s1 = Surface ( mask = "sort", opt_3d = "s4", x = xs, y = ys,
z = zs + 2., c = zs)
s2 = Surface ( mask = "sort", opt_3d = "wm", x = hx, y = hy, z = hz, c = zs)
# g1.replace (1, s1)
# g1.add ( s2 )
# g1.change_plot ( link = 1 , titles = "Imploding Sphere in R3",
# phi = 70.0, theta = 30.0,
# axis_limits = [[-1., 1.], [-1., 1.], [-0.7, 3.0]])
g1.new ( [s1, s2], link = 1 , titles = "Two Spheres in R3",
axis_limits = [[-1., 1.], [-1., 1.], [-0.7, 3.0]],
x_factor = 1.7)
## phi = 70.0, theta = 30.0,
g1.plot ( )
|