File: prepj.f

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (171 lines) | stat: -rw-r--r-- 6,401 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
      subroutine prepj (neq, y, yh, nyh, ewt, ftem, savf, wm, iwm,
     1   f, jac)
clll. optimize
      external f, jac
      integer neq, nyh, iwm
      integer iownd, iowns,
     1   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     2   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
      integer i, i1, i2, ier, ii, j, j1, jj, lenp,
     1   mba, mband, meb1, meband, ml, ml3, mu, np1
      double precision y, yh, ewt, ftem, savf, wm
      double precision rowns,
     1   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround
      double precision con, di, fac, hl0, r, r0, srur, yi, yj, yjj,
     1   vnorm
      dimension neq(1), y(1), yh(nyh,*), ewt(1), ftem(1), savf(1),
     1   wm(*), iwm(*)
      common /ls0001/ rowns(209),
     2   ccmax, el0, h, hmin, hmxi, hu, rc, tn, uround,
     3   iownd(14), iowns(6),
     4   icf, ierpj, iersl, jcur, jstart, kflag, l, meth, miter,
     5   maxord, maxcor, msbp, mxncf, n, nq, nst, nfe, nje, nqu
c-----------------------------------------------------------------------
c prepj is called by stode to compute and process the matrix
c p = i - h*el(1)*j , where j is an approximation to the jacobian.
c here j is computed by the user-supplied routine jac if
c miter = 1 or 4, or by finite differencing if miter = 2, 3, or 5.
c if miter = 3, a diagonal approximation to j is used.
c j is stored in wm and replaced by p.  if miter .ne. 3, p is then
c subjected to lu decomposition in preparation for later solution
c of linear systems with p as coefficient matrix. this is done
c by dgefa if miter = 1 or 2, and by dgbfa if miter = 4 or 5.
c
c in addition to variables described previously, communication
c with prepj uses the following..
c y     = array containing predicted values on entry.
c ftem  = work array of length n (acor in stode).
c savf  = array containing f evaluated at predicted y.
c wm    = real work space for matrices.  on output it contains the
c         inverse diagonal matrix if miter = 3 and the lu decomposition
c         of p if miter is 1, 2 , 4, or 5.
c         storage of matrix elements starts at wm(3).
c         wm also contains the following matrix-related data..
c         wm(1) = sqrt(uround), used in numerical jacobian increments.
c         wm(2) = h*el0, saved for later use if miter = 3.
c iwm   = integer work space containing pivot information, starting at
c         iwm(21), if miter is 1, 2, 4, or 5.  iwm also contains band
c         parameters ml = iwm(1) and mu = iwm(2) if miter is 4 or 5.
c el0   = el(1) (input).
c ierpj = output error flag,  = 0 if no trouble, .gt. 0 if
c         p matrix found to be singular.
c jcur  = output flag = 1 to indicate that the jacobian matrix
c         (or approximation) is now current.
c this routine also uses the common variables el0, h, tn, uround,
c miter, n, nfe, and nje.
c-----------------------------------------------------------------------
      nje = nje + 1
      ierpj = 0
      jcur = 1
      hl0 = h*el0
      go to (100, 200, 300, 400, 500), miter
c if miter = 1, call jac and multiply by scalar. -----------------------
 100  lenp = n*n
      do 110 i = 1,lenp
 110    wm(i+2) = 0.0d0
      call jac (neq, tn, y, 0, 0, wm(3), n)
      con = -hl0
      do 120 i = 1,lenp
 120    wm(i+2) = wm(i+2)*con
      go to 240
c if miter = 2, make n calls to f to approximate j. --------------------
 200  fac = vnorm (n, savf, ewt)
      r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
      if (r0 .eq. 0.0d0) r0 = 1.0d0
      srur = wm(1)
      j1 = 2
      do 230 j = 1,n
        yj = y(j)
        r = dmax1(srur*dabs(yj),r0/ewt(j))
        y(j) = y(j) + r
        fac = -hl0/r
        call f (neq, tn, y, ftem)
        do 220 i = 1,n
 220      wm(i+j1) = (ftem(i) - savf(i))*fac
        y(j) = yj
        j1 = j1 + n
 230    continue
      nfe = nfe + n
c add identity matrix. -------------------------------------------------
 240  j = 3
      np1 = n + 1
      do 250 i = 1,n
        wm(j) = wm(j) + 1.0d0
 250    j = j + np1
c do lu decomposition on p. --------------------------------------------
      call dgefa (wm(3), n, n, iwm(21), ier)
      if (ier .ne. 0) ierpj = 1
      return
c if miter = 3, construct a diagonal approximation to j and p. ---------
 300  wm(2) = hl0
      r = el0*0.1d0
      do 310 i = 1,n
 310    y(i) = y(i) + r*(h*savf(i) - yh(i,2))
      call f (neq, tn, y, wm(3))
      nfe = nfe + 1
      do 320 i = 1,n
        r0 = h*savf(i) - yh(i,2)
        di = 0.1d0*r0 - h*(wm(i+2) - savf(i))
        wm(i+2) = 1.0d0
        if (dabs(r0) .lt. uround/ewt(i)) go to 320
        if (dabs(di) .eq. 0.0d0) go to 330
        wm(i+2) = 0.1d0*r0/di
 320    continue
      return
 330  ierpj = 1
      return
c if miter = 4, call jac and multiply by scalar. -----------------------
 400  ml = iwm(1)
      mu = iwm(2)
      ml3 = ml + 3
      mband = ml + mu + 1
      meband = mband + ml
      lenp = meband*n
      do 410 i = 1,lenp
 410    wm(i+2) = 0.0d0
      call jac (neq, tn, y, ml, mu, wm(ml3), meband)
      con = -hl0
      do 420 i = 1,lenp
 420    wm(i+2) = wm(i+2)*con
      go to 570
c if miter = 5, make mband calls to f to approximate j. ----------------
 500  ml = iwm(1)
      mu = iwm(2)
      mband = ml + mu + 1
      mba = min0(mband,n)
      meband = mband + ml
      meb1 = meband - 1
      srur = wm(1)
      fac = vnorm (n, savf, ewt)
      r0 = 1000.0d0*dabs(h)*uround*dfloat(n)*fac
      if (r0 .eq. 0.0d0) r0 = 1.0d0
      do 560 j = 1,mba
        do 530 i = j,n,mband
          yi = y(i)
          r = dmax1(srur*dabs(yi),r0/ewt(i))
 530      y(i) = y(i) + r
        call f (neq, tn, y, ftem)
        do 550 jj = j,n,mband
          y(jj) = yh(jj,1)
          yjj = y(jj)
          r = dmax1(srur*dabs(yjj),r0/ewt(jj))
          fac = -hl0/r
          i1 = max0(jj-mu,1)
          i2 = min0(jj+ml,n)
          ii = jj*meb1 - ml + 2
          do 540 i = i1,i2
 540        wm(ii+i) = (ftem(i) - savf(i))*fac
 550      continue
 560    continue
      nfe = nfe + mba
c add identity matrix. -------------------------------------------------
 570  ii = mband + 2
      do 580 i = 1,n
        wm(ii) = wm(ii) + 1.0d0
 580    ii = ii + meband
c do lu decomposition of p. --------------------------------------------
      call dgbfa (wm(3), meband, n, ml, mu, iwm(21), ier)
      if (ier .ne. 0) ierpj = 1
      return
c----------------------- end of subroutine prepj -----------------------
      end