1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
subroutine splder(t,n,c,k,nu,x,y,m,wrk,ier)
c subroutine splder evaluates in a number of points x(i),i=1,2,...,m
c the derivative of order nu of a spline s(x) of degree k,given in
c its b-spline representation.
c
c calling sequence:
c call splder(t,n,c,k,nu,x,y,m,wrk,ier)
c
c input parameters:
c t : array,length n, which contains the position of the knots.
c n : integer, giving the total number of knots of s(x).
c c : array,length n, which contains the b-spline coefficients.
c k : integer, giving the degree of s(x).
c nu : integer, specifying the order of the derivative. 0<=nu<=k
c x : array,length m, which contains the points where the deriv-
c ative of s(x) must be evaluated.
c m : integer, giving the number of points where the derivative
c of s(x) must be evaluated
c wrk : real array of dimension n. used as working space.
c
c output parameters:
c y : array,length m, giving the value of the derivative of s(x)
c at the different points.
c ier : error flag
c ier = 0 : normal return
c ier =10 : invalid input data (see restrictions)
c
c restrictions:
c 0 <= nu <= k
c m >= 1
c t(k+1) <= x(i) <= x(i+1) <= t(n-k) , i=1,2,...,m-1.
c
c other subroutines required: fpbspl
c
c references :
c de boor c : on calculating with b-splines, j. approximation theory
c 6 (1972) 50-62.
c cox m.g. : the numerical evaluation of b-splines, j. inst. maths
c applics 10 (1972) 134-149.
c dierckx p. : curve and surface fitting with splines, monographs on
c numerical analysis, oxford university press, 1993.
c
c author :
c p.dierckx
c dept. computer science, k.u.leuven
c celestijnenlaan 200a, b-3001 heverlee, belgium.
c e-mail : Paul.Dierckx@cs.kuleuven.ac.be
c
c latest update : march 1987
c
c++ pearu: 13 aug 20003
c++ - disabled cliping x values to interval [min(t),max(t)]
c++ - removed the restriction of the orderness of x values
c++ - fixed initialization of sp to double precision value
c
c ..scalar arguments..
integer n,k,nu,m,ier
c ..array arguments..
real*8 t(n),c(n),x(m),y(m),wrk(n)
c ..local scalars..
integer i,j,kk,k1,k2,l,ll,l1,l2,nk1,nk2,nn
real*8 ak,arg,fac,sp,tb,te
c++..
integer k3
c..++
c ..local arrays ..
real*8 h(6)
c before starting computations a data check is made. if the input data
c are invalid control is immediately repassed to the calling program.
ier = 10
if(nu.lt.0 .or. nu.gt.k) go to 200
c-- if(m-1) 200,30,10
c++..
if(m.lt.1) go to 200
c..++
c-- 10 do 20 i=2,m
c-- if(x(i).lt.x(i-1)) go to 200
c-- 20 continue
30 ier = 0
c fetch tb and te, the boundaries of the approximation interval.
k1 = k+1
k3 = k1+1
nk1 = n-k1
tb = t(k1)
te = t(nk1+1)
c the derivative of order nu of a spline of degree k is a spline of
c degree k-nu,the b-spline coefficients wrk(i) of which can be found
c using the recurrence scheme of de boor.
l = 1
kk = k
nn = n
do 40 i=1,nk1
wrk(i) = c(i)
40 continue
if(nu.eq.0) go to 100
nk2 = nk1
do 60 j=1,nu
ak = kk
nk2 = nk2-1
l1 = l
do 50 i=1,nk2
l1 = l1+1
l2 = l1+kk
fac = t(l2)-t(l1)
if(fac.le.0.) go to 50
wrk(i) = ak*(wrk(i+1)-wrk(i))/fac
50 continue
l = l+1
kk = kk-1
60 continue
if(kk.ne.0) go to 100
c if nu=k the derivative is a piecewise constant function
j = 1
do 90 i=1,m
arg = x(i)
c++..
65 if(arg.ge.t(l) .or. l+1.eq.k2) go to 70
l1 = l
l = l-1
j = j-1
go to 65
c..++
70 if(arg.lt.t(l+1) .or. l.eq.nk1) go to 80
l = l+1
j = j+1
go to 70
80 y(i) = wrk(j)
90 continue
go to 200
100 l = k1
l1 = l+1
k2 = k1-nu
c main loop for the different points.
do 180 i=1,m
c fetch a new x-value arg.
arg = x(i)
c-- if(arg.lt.tb) arg = tb
c-- if(arg.gt.te) arg = te
c search for knot interval t(l) <= arg < t(l+1)
c++..
135 if(arg.ge.t(l) .or. l1.eq.k3) go to 140
l1 = l
l = l-1
go to 135
c..++
140 if(arg.lt.t(l1) .or. l.eq.nk1) go to 150
l = l1
l1 = l+1
go to 140
c evaluate the non-zero b-splines of degree k-nu at arg.
150 call fpbspl(t,n,kk,arg,l,h)
c find the value of the derivative at x=arg.
sp = 0.0d0
ll = l-k1
do 160 j=1,k2
ll = ll+1
sp = sp+wrk(ll)*h(j)
160 continue
y(i) = sp
180 continue
200 return
end
|