File: basic.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (529 lines) | stat: -rw-r--r-- 18,404 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
## Automatically adapted for scipy Oct 18, 2005 by

## Automatically adapted for scipy Oct 18, 2005 by

#
# Author: Pearu Peterson, March 2002
#
# w/ additions by Travis Oliphant, March 2002

__all__ = ['solve','inv','det','lstsq','norm','pinv','pinv2',
           'tri','tril','triu','toeplitz','hankel','lu_solve',
           'cho_solve','solve_banded','LinAlgError','kron',
           'all_mat']

#from blas import get_blas_funcs
from flinalg import get_flinalg_funcs
from lapack import get_lapack_funcs
from numpy import asarray,zeros,sum,newaxis,greater_equal,subtract,arange,\
     conjugate,ravel,r_,mgrid,take,ones,dot,transpose,sqrt,add,real
import numpy
from numpy import asarray_chkfinite, outer, concatenate, reshape, single
from numpy import matrix as Matrix
from scipy.linalg import calc_lwork

class LinAlgError(Exception):
    pass

def lu_solve((lu, piv), b, trans=0, overwrite_b=0):
    """ lu_solve((lu, piv), b, trans=0, overwrite_b=0) -> x

    Solve a system of equations given a previously factored matrix

    Inputs:

      (lu,piv) -- The factored matrix, a (the output of lu_factor)
      b        -- a set of right-hand sides
      trans    -- type of system to solve:
                  0 : a   * x = b   (no transpose)
                  1 : a^T * x = b   (transpose)
                  2   a^H * x = b   (conjugate transpose)

    Outputs:

       x -- the solution to the system
    """
    b1 = asarray_chkfinite(b)
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
    if lu.shape[0] != b1.shape[0]:
        raise ValueError, "incompatible dimensions."
    getrs, = get_lapack_funcs(('getrs',),(lu,b1))
    x,info = getrs(lu,piv,b1,trans=trans,overwrite_b=overwrite_b)
    if info==0:
        return x
    raise ValueError,\
          'illegal value in %-th argument of internal gesv|posv'%(-info)

def cho_solve((c, lower), b, overwrite_b=0):
    """ cho_solve((c, lower), b, overwrite_b=0) -> x

    Solve a system of equations given a previously cholesky factored matrix

    Inputs:

      (c,lower) -- The factored matrix, a (the output of cho_factor)
      b        -- a set of right-hand sides

    Outputs:

       x -- the solution to the system a*x = b
    """
    b1 = asarray_chkfinite(b)
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
    if c.shape[0] != b1.shape[0]:
        raise ValueError, "incompatible dimensions."
    potrs, = get_lapack_funcs(('potrs',),(c,b1))
    x,info = potrs(c,b1,lower=lower,overwrite_b=overwrite_b)
    if info==0:
        return x
    raise ValueError,\
          'illegal value in %-th argument of internal gesv|posv'%(-info)

# Linear equations
def solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0,
          debug = 0):
    """ solve(a, b, sym_pos=0, lower=0, overwrite_a=0, overwrite_b=0) -> x

    Solve a linear system of equations a * x = b for x.

    Inputs:

      a -- An N x N matrix.
      b -- An N x nrhs matrix or N vector.
      sym_pos -- Assume a is symmetric and positive definite.
      lower -- Assume a is lower triangular, otherwise upper one.
               Only used if sym_pos is true.
      overwrite_y - Discard data in y, where y is a or b.

    Outputs:

      x -- The solution to the system a * x = b
    """
    a1, b1 = map(asarray_chkfinite,(a,b))
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError, 'expected square matrix'
    if a1.shape[0] != b1.shape[0]:
        raise ValueError, 'incompatible dimensions'
    overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
    if debug:
        print 'solve:overwrite_a=',overwrite_a
        print 'solve:overwrite_b=',overwrite_b
    if sym_pos:
        posv, = get_lapack_funcs(('posv',),(a1,b1))
        c,x,info = posv(a1,b1,
                        lower = lower,
                        overwrite_a=overwrite_a,
                        overwrite_b=overwrite_b)
    else:
        gesv, = get_lapack_funcs(('gesv',),(a1,b1))
        lu,piv,x,info = gesv(a1,b1,
                             overwrite_a=overwrite_a,
                             overwrite_b=overwrite_b)

    if info==0:
        return x
    if info>0:
        raise LinAlgError, "singular matrix"
    raise ValueError,\
          'illegal value in %-th argument of internal gesv|posv'%(-info)

def solve_banded((l,u), ab, b, overwrite_ab=0, overwrite_b=0,
          debug = 0):
    """ solve_banded((l,u), ab, b, overwrite_ab=0, overwrite_b=0) -> x

    Solve a linear system of equations a * x = b for x where
    a is a banded matrix stored in diagonal orded form

     *   *     a1u

     *  a12 a23 ...
    a11 a22 a33 ...
    a21 a32 a43 ...
    .
    al1 ..         *

    Inputs:

      (l,u) -- number of non-zero lower and upper diagonals, respectively.
      a -- An N x (l+u+1) matrix.
      b -- An N x nrhs matrix or N vector.
      overwrite_y - Discard data in y, where y is ab or b.

    Outputs:

      x -- The solution to the system a * x = b
    """
    a1, b1 = map(asarray_chkfinite,(ab,b))
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))

    gbsv, = get_lapack_funcs(('gbsv',),(a1,b1))
    a2 = zeros((2*l+u+1,a1.shape[1]), dtype=gbsv.dtype)
    a2[l:,:] = a1
    lu,piv,x,info = gbsv(l,u,a2,b1,
                         overwrite_ab=1,
                         overwrite_b=overwrite_b)
    if info==0:
        return x
    if info>0:
        raise LinAlgError, "singular matrix"
    raise ValueError,\
          'illegal value in %-th argument of internal gbsv'%(-info)


# matrix inversion
def inv(a, overwrite_a=0):
    """ inv(a, overwrite_a=0) -> a_inv

    Return inverse of square matrix a.
    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError, 'expected square matrix'
    overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
    #XXX: I found no advantage or disadvantage of using finv.
##     finv, = get_flinalg_funcs(('inv',),(a1,))
##     if finv is not None:
##         a_inv,info = finv(a1,overwrite_a=overwrite_a)
##         if info==0:
##             return a_inv
##         if info>0: raise LinAlgError, "singular matrix"
##         if info<0: raise ValueError,\
##            'illegal value in %-th argument of internal inv.getrf|getri'%(-info)
    getrf,getri = get_lapack_funcs(('getrf','getri'),(a1,))
    #XXX: C ATLAS versions of getrf/i have rowmajor=1, this could be
    #     exploited for further optimization. But it will be probably
    #     a mess. So, a good testing site is required before trying
    #     to do that.
    if getrf.module_name[:7]=='clapack'!=getri.module_name[:7]:
        # ATLAS 3.2.1 has getrf but not getri.
        lu,piv,info = getrf(transpose(a1),
                            rowmajor=0,overwrite_a=overwrite_a)
        lu = transpose(lu)
    else:
        lu,piv,info = getrf(a1,overwrite_a=overwrite_a)
    if info==0:
        if getri.module_name[:7] == 'flapack':
            lwork = calc_lwork.getri(getri.prefix,a1.shape[0])
            lwork = lwork[1]
            # XXX: the following line fixes curious SEGFAULT when
            # benchmarking 500x500 matrix inverse. This seems to
            # be a bug in LAPACK ?getri routine because if lwork is
            # minimal (when using lwork[0] instead of lwork[1]) then
            # all tests pass. Further investigation is required if
            # more such SEGFAULTs occur.
            lwork = int(1.01*lwork)
            inv_a,info = getri(lu,piv,
                               lwork=lwork,overwrite_lu=1)
        else: # clapack
            inv_a,info = getri(lu,piv,overwrite_lu=1)
    if info>0: raise LinAlgError, "singular matrix"
    if info<0: raise ValueError,\
       'illegal value in %-th argument of internal getrf|getri'%(-info)
    return inv_a


## matrix and Vector norm
import decomp
def norm(x, ord=None):
    """ norm(x, ord=None) -> n

    Matrix or vector norm.

    Inputs:

      x -- a rank-1 (vector) or rank-2 (matrix) array
      ord -- the order of the norm.

     Comments:
       For arrays of any rank, if ord is None:
         calculate the square norm (Euclidean norm for vectors, Frobenius norm for matrices)

       For vectors ord can be any real number including Inf or -Inf.
         ord = Inf, computes the maximum of the magnitudes
         ord = -Inf, computes minimum of the magnitudes
         ord is finite, computes sum(abs(x)**ord,axis=0)**(1.0/ord)

       For matrices ord can only be one of the following values:
         ord = 2 computes the largest singular value
         ord = -2 computes the smallest singular value
         ord = 1 computes the largest column sum of absolute values
         ord = -1 computes the smallest column sum of absolute values
         ord = Inf computes the largest row sum of absolute values
         ord = -Inf computes the smallest row sum of absolute values
         ord = 'fro' computes the frobenius norm sqrt(sum(diag(X.H * X),axis=0))

       For values ord < 0, the result is, strictly speaking, not a
       mathematical 'norm', but it may still be useful for numerical purposes.
    """
    x = asarray_chkfinite(x)
    if ord is None: # check the default case first and handle it immediately
        return sqrt(add.reduce(real((conjugate(x)*x).ravel())))

    nd = len(x.shape)
    Inf = numpy.Inf
    if nd == 1:
        if ord == Inf:
            return numpy.amax(abs(x))
        elif ord == -Inf:
            return numpy.amin(abs(x))
        elif ord == 1:
            return numpy.sum(abs(x),axis=0) # special case for speedup
        elif ord == 2:
            return sqrt(numpy.sum(real((conjugate(x)*x)),axis=0)) # special case for speedup
        else:
            return numpy.sum(abs(x)**ord,axis=0)**(1.0/ord)
    elif nd == 2:
        if ord == 2:
            return numpy.amax(decomp.svd(x,compute_uv=0))
        elif ord == -2:
            return numpy.amin(decomp.svd(x,compute_uv=0))
        elif ord == 1:
            return numpy.amax(numpy.sum(abs(x),axis=0))
        elif ord == Inf:
            return numpy.amax(numpy.sum(abs(x),axis=1))
        elif ord == -1:
            return numpy.amin(numpy.sum(abs(x),axis=0))
        elif ord == -Inf:
            return numpy.amin(numpy.sum(abs(x),axis=1))
        elif ord in ['fro','f']:
            return sqrt(add.reduce(real((conjugate(x)*x).ravel())))
        else:
            raise ValueError, "Invalid norm order for matrices."
    else:
        raise ValueError, "Improper number of dimensions to norm."

### Determinant

def det(a, overwrite_a=0):
    """ det(a, overwrite_a=0) -> d

    Return determinant of a square matrix.
    """
    a1 = asarray_chkfinite(a)
    if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]:
        raise ValueError, 'expected square matrix'
    overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
    fdet, = get_flinalg_funcs(('det',),(a1,))
    a_det,info = fdet(a1,overwrite_a=overwrite_a)
    if info<0: raise ValueError,\
       'illegal value in %-th argument of internal det.getrf'%(-info)
    return a_det

### Linear Least Squares

def lstsq(a, b, cond=None, overwrite_a=0, overwrite_b=0):
    """ lstsq(a, b, cond=None, overwrite_a=0, overwrite_b=0) -> x,resids,rank,s

    Return least-squares solution of a * x = b.

    Inputs:

      a -- An M x N matrix.
      b -- An M x nrhs matrix or M vector.
      cond -- Used to determine effective rank of a.

    Outputs:

      x -- The solution (N x nrhs matrix) to the minimization problem:
                  2-norm(| b - a * x |) -> min
      resids -- The residual sum-of-squares for the solution matrix x
                (only if M>N and rank==N).
      rank -- The effective rank of a.
      s -- Singular values of a in decreasing order. The condition number
           of a is abs(s[0]/s[-1]).
    """
    a1, b1 = map(asarray_chkfinite,(a,b))
    if len(a1.shape) != 2:
        raise ValueError, 'expected matrix'
    m,n = a1.shape
    if len(b1.shape)==2: nrhs = b1.shape[1]
    else: nrhs = 1
    if m != b1.shape[0]:
        raise ValueError, 'incompatible dimensions'
    gelss, = get_lapack_funcs(('gelss',),(a1,b1))
    if n>m:
        # need to extend b matrix as it will be filled with
        # a larger solution matrix
        b2 = zeros((n,nrhs), dtype=gelss.dtype)
        if len(b1.shape)==2: b2[:m,:] = b1
        else: b2[:m,0] = b1
        b1 = b2
    overwrite_a = overwrite_a or (a1 is not a and not hasattr(a,'__array__'))
    overwrite_b = overwrite_b or (b1 is not b and not hasattr(b,'__array__'))
    if gelss.module_name[:7] == 'flapack':
        lwork = calc_lwork.gelss(gelss.prefix,m,n,nrhs)[1]
        v,x,s,rank,info = gelss(a1,b1,cond = cond,
                                lwork = lwork,
                                overwrite_a = overwrite_a,
                                overwrite_b = overwrite_b)
    else:
        raise NotImplementedError,'calling gelss from %s' % (gelss.module_name)
    if info>0: raise LinAlgError, "SVD did not converge in Linear Least Squares"
    if info<0: raise ValueError,\
       'illegal value in %-th argument of internal gelss'%(-info)
    resids = asarray([], dtype=x.dtype)
    if n<m:
        x1 = x[:n]
        if rank==n: resids = sum(x[n:]**2,axis=0)
        x = x1
    return x,resids,rank,s


def pinv(a, cond=None, rcond=None):
    """ pinv(a, rcond=None) -> a_pinv

    Compute generalized inverse of A using least-squares solver.
    """
    a = asarray_chkfinite(a)
    b = numpy.identity(a.shape[0], dtype=a.dtype)
    if rcond is not None:
        cond = rcond
    return lstsq(a, b, cond=cond)[0]


eps = numpy.finfo(float).eps
feps = numpy.finfo(single).eps

_array_precision = {'f': 0, 'd': 1, 'F': 0, 'D': 1}
def pinv2(a, cond=None, rcond=None):
    """ pinv2(a, rcond=None) -> a_pinv

    Compute the generalized inverse of A using svd.
    """
    a = asarray_chkfinite(a)
    u, s, vh = decomp.svd(a)
    t = u.dtype.char
    if rcond is not None:
        cond = rcond
    if cond in [None,-1]:
        cond = {0: feps*1e3, 1: eps*1e6}[_array_precision[t]]
    m,n = a.shape
    cutoff = cond*numpy.maximum.reduce(s)
    psigma = zeros((m,n),t)
    for i in range(len(s)):
        if s[i] > cutoff:
            psigma[i,i] = 1.0/conjugate(s[i])
    #XXX: use lapack/blas routines for dot
    return transpose(conjugate(dot(dot(u,psigma),vh)))

#-----------------------------------------------------------------------------
# matrix construction functions
#-----------------------------------------------------------------------------

def tri(N, M=None, k=0, dtype=None):
    """ returns a N-by-M matrix where all the diagonals starting from
        lower left corner up to the k-th are all ones.
    """
    if M is None: M = N
    if type(M) == type('d'):
        #pearu: any objections to remove this feature?
        #       As tri(N,'d') is equivalent to tri(N,dtype='d')
        dtype = M
        M = N
    m = greater_equal(subtract.outer(arange(N), arange(M)),-k)
    if dtype is None:
        return m
    else:
        return m.astype(dtype)

def tril(m, k=0):
    """ returns the elements on and below the k-th diagonal of m.  k=0 is the
        main diagonal, k > 0 is above and k < 0 is below the main diagonal.
    """
    svsp = getattr(m,'spacesaver',lambda:0)()
    m = asarray(m)
    out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char)*m
    pass  ## pass  ## out.savespace(svsp)
    return out

def triu(m, k=0):
    """ returns the elements on and above the k-th diagonal of m.  k=0 is the
        main diagonal, k > 0 is above and k < 0 is below the main diagonal.
    """
    svsp = getattr(m,'spacesaver',lambda:0)()
    m = asarray(m)
    out = (1-tri(m.shape[0], m.shape[1], k-1, m.dtype.char))*m
    pass  ## pass  ## out.savespace(svsp)
    return out

def toeplitz(c,r=None):
    """ Construct a toeplitz matrix (i.e. a matrix with constant diagonals).

        Description:

           toeplitz(c,r) is a non-symmetric Toeplitz matrix with c as its first
           column and r as its first row.

           toeplitz(c) is a symmetric (Hermitian) Toeplitz matrix (r=c).

        See also: hankel
    """
    isscalar = numpy.isscalar
    if isscalar(c) or isscalar(r):
        return c
    if r is None:
        r = c
        r[0] = conjugate(r[0])
        c = conjugate(c)
    r,c = map(asarray_chkfinite,(r,c))
    r,c = map(ravel,(r,c))
    rN,cN = map(len,(r,c))
    if r[0] != c[0]:
        print "Warning: column and row values don't agree; column value used."
    vals = r_[r[rN-1:0:-1], c]
    cols = mgrid[0:cN]
    rows = mgrid[rN:0:-1]
    indx = cols[:,newaxis]*ones((1,rN),dtype=int) + \
           rows[newaxis,:]*ones((cN,1),dtype=int) - 1
    return take(vals, indx, 0)


def hankel(c,r=None):
    """ Construct a hankel matrix (i.e. matrix with constant anti-diagonals).

        Description:

          hankel(c,r) is a Hankel matrix whose first column is c and whose
          last row is r.

          hankel(c) is a square Hankel matrix whose first column is C.
          Elements below the first anti-diagonal are zero.

        See also:  toeplitz
    """
    isscalar = numpy.isscalar
    if isscalar(c) or isscalar(r):
        return c
    if r is None:
        r = zeros(len(c))
    elif r[0] != c[-1]:
        print "Warning: column and row values don't agree; column value used."
    r,c = map(asarray_chkfinite,(r,c))
    r,c = map(ravel,(r,c))
    rN,cN = map(len,(r,c))
    vals = r_[c, r[1:rN]]
    cols = mgrid[1:cN+1]
    rows = mgrid[0:rN]
    indx = cols[:,newaxis]*ones((1,rN),dtype=int) + \
           rows[newaxis,:]*ones((cN,1),dtype=int) - 1
    return take(vals, indx, 0)

def all_mat(*args):
    return map(Matrix,args)

def kron(a,b):
    """kronecker product of a and b

    Kronecker product of two matrices is block matrix
    [[ a[ 0 ,0]*b, a[ 0 ,1]*b, ... , a[ 0 ,n-1]*b  ],
     [ ...                                   ...   ],
     [ a[m-1,0]*b, a[m-1,1]*b, ... , a[m-1,n-1]*b  ]]
    """
    if not a.flags['CONTIGUOUS']:
        a = reshape(a, a.shape)
    if not b.flags['CONTIGUOUS']:
        b = reshape(b, b.shape)
    o = outer(a,b)
    o=o.reshape(a.shape + b.shape)
    return concatenate(concatenate(o, axis=1), axis=1)