File: slaqgs.c

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (138 lines) | stat: -rw-r--r-- 3,845 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138


/*
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 */
/*
 * File name:	slaqgs.c
 * History:     Modified from LAPACK routine SLAQGE
 */
#include <math.h>
#include "ssp_defs.h"
#include "util.h"

void
slaqgs(SuperMatrix *A, float *r, float *c, 
	float rowcnd, float colcnd, float amax, char *equed)
{
/*
    Purpose   
    =======   

    SLAQGS equilibrates a general sparse M by N matrix A using the row and   
    scaling factors in the vectors R and C.   

    See supermatrix.h for the definition of 'SuperMatrix' structure.

    Arguments   
    =========   

    A       (input/output) SuperMatrix*
            On exit, the equilibrated matrix.  See EQUED for the form of 
            the equilibrated matrix. The type of A can be:
	    Stype = NC; Dtype = SLU_S; Mtype = GE.
	    
    R       (input) float*, dimension (A->nrow)
            The row scale factors for A.
	    
    C       (input) float*, dimension (A->ncol)
            The column scale factors for A.
	    
    ROWCND  (input) float
            Ratio of the smallest R(i) to the largest R(i).
	    
    COLCND  (input) float
            Ratio of the smallest C(i) to the largest C(i).
	    
    AMAX    (input) float
            Absolute value of largest matrix entry.
	    
    EQUED   (output) char*
            Specifies the form of equilibration that was done.   
            = 'N':  No equilibration   
            = 'R':  Row equilibration, i.e., A has been premultiplied by  
                    diag(R).   
            = 'C':  Column equilibration, i.e., A has been postmultiplied  
                    by diag(C).   
            = 'B':  Both row and column equilibration, i.e., A has been
                    replaced by diag(R) * A * diag(C).   

    Internal Parameters   
    ===================   

    THRESH is a threshold value used to decide if row or column scaling   
    should be done based on the ratio of the row or column scaling   
    factors.  If ROWCND < THRESH, row scaling is done, and if   
    COLCND < THRESH, column scaling is done.   

    LARGE and SMALL are threshold values used to decide if row scaling   
    should be done based on the absolute size of the largest matrix   
    element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done.   

    ===================================================================== 
*/

#define THRESH    (0.1)
    
    /* Local variables */
    NCformat *Astore;
    float   *Aval;
    int i, j, irow;
    float large, small, cj;
    extern double slamch_(char *);


    /* Quick return if possible */
    if (A->nrow <= 0 || A->ncol <= 0) {
	*(unsigned char *)equed = 'N';
	return;
    }

    Astore = A->Store;
    Aval = Astore->nzval;
    
    /* Initialize LARGE and SMALL. */
    small = slamch_("Safe minimum") / slamch_("Precision");
    large = 1. / small;

    if (rowcnd >= THRESH && amax >= small && amax <= large) {
	if (colcnd >= THRESH)
	    *(unsigned char *)equed = 'N';
	else {
	    /* Column scaling */
	    for (j = 0; j < A->ncol; ++j) {
		cj = c[j];
		for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
		    Aval[i] *= cj;
                }
	    }
	    *(unsigned char *)equed = 'C';
	}
    } else if (colcnd >= THRESH) {
	/* Row scaling, no column scaling */
	for (j = 0; j < A->ncol; ++j)
	    for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
		irow = Astore->rowind[i];
		Aval[i] *= r[irow];
	    }
	*(unsigned char *)equed = 'R';
    } else {
	/* Row and column scaling */
	for (j = 0; j < A->ncol; ++j) {
	    cj = c[j];
	    for (i = Astore->colptr[j]; i < Astore->colptr[j+1]; ++i) {
		irow = Astore->rowind[i];
		Aval[i] *= cj * r[irow];
	    }
	}
	*(unsigned char *)equed = 'B';
    }

    return;

} /* slaqgs */