1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
|
/* Elimination tree computation and layout routines */
#include <stdio.h>
#include <stdlib.h>
#include "dsp_defs.h"
/*
* Implementation of disjoint set union routines.
* Elements are integers in 0..n-1, and the
* names of the sets themselves are of type int.
*
* Calls are:
* initialize_disjoint_sets (n) initial call.
* s = make_set (i) returns a set containing only i.
* s = link (t, u) returns s = t union u, destroying t and u.
* s = find (i) return name of set containing i.
* finalize_disjoint_sets final call.
*
* This implementation uses path compression but not weighted union.
* See Tarjan's book for details.
* John Gilbert, CMI, 1987.
*
* Implemented path-halving by XSL 07/05/95.
*/
static int *pp; /* parent array for sets */
static
int *mxCallocInt(int n)
{
register int i;
int *buf;
buf = (int *) SUPERLU_MALLOC( n * sizeof(int) );
if ( !buf ) {
ABORT("SUPERLU_MALLOC fails for buf in mxCallocInt()");
}
for (i = 0; i < n; i++) buf[i] = 0;
return (buf);
}
static
void initialize_disjoint_sets (
int n
)
{
pp = mxCallocInt(n);
}
static
int make_set (
int i
)
{
pp[i] = i;
return i;
}
static
int link (
int s,
int t
)
{
pp[s] = t;
return t;
}
/* PATH HALVING */
static
int find (int i)
{
register int p, gp;
p = pp[i];
gp = pp[p];
while (gp != p) {
pp[i] = gp;
i = gp;
p = pp[i];
gp = pp[p];
}
return (p);
}
#if 0
/* PATH COMPRESSION */
static
int find (
int i
)
{
if (pp[i] != i)
pp[i] = find (pp[i]);
return pp[i];
}
#endif
static
void finalize_disjoint_sets (
void
)
{
SUPERLU_FREE(pp);
}
/*
* Find the elimination tree for A'*A.
* This uses something similar to Liu's algorithm.
* It runs in time O(nz(A)*log n) and does not form A'*A.
*
* Input:
* Sparse matrix A. Numeric values are ignored, so any
* explicit zeros are treated as nonzero.
* Output:
* Integer array of parents representing the elimination
* tree of the symbolic product A'*A. Each vertex is a
* column of A, and nc means a root of the elimination forest.
*
* John R. Gilbert, Xerox, 10 Dec 1990
* Based on code by JRG dated 1987, 1988, and 1990.
*/
/*
* Nonsymmetric elimination tree
*/
int
sp_coletree(
int *acolst, int *acolend, /* column start and end past 1 */
int *arow, /* row indices of A */
int nr, int nc, /* dimension of A */
int *parent /* parent in elim tree */
)
{
int *root; /* root of subtee of etree */
int *firstcol; /* first nonzero col in each row*/
int rset, cset;
int row, col;
int rroot;
int p;
root = mxCallocInt (nc);
initialize_disjoint_sets (nc);
/* Compute firstcol[row] = first nonzero column in row */
firstcol = mxCallocInt (nr);
for (row = 0; row < nr; firstcol[row++] = nc);
for (col = 0; col < nc; col++)
for (p = acolst[col]; p < acolend[col]; p++) {
row = arow[p];
firstcol[row] = SUPERLU_MIN(firstcol[row], col);
}
/* Compute etree by Liu's algorithm for symmetric matrices,
except use (firstcol[r],c) in place of an edge (r,c) of A.
Thus each row clique in A'*A is replaced by a star
centered at its first vertex, which has the same fill. */
for (col = 0; col < nc; col++) {
cset = make_set (col);
root[cset] = col;
parent[col] = nc; /* Matlab */
for (p = acolst[col]; p < acolend[col]; p++) {
row = firstcol[arow[p]];
if (row >= col) continue;
rset = find (row);
rroot = root[rset];
if (rroot != col) {
parent[rroot] = col;
cset = link (cset, rset);
root[cset] = col;
}
}
}
SUPERLU_FREE (root);
SUPERLU_FREE (firstcol);
finalize_disjoint_sets ();
return 0;
}
/*
* q = TreePostorder (n, p);
*
* Postorder a tree.
* Input:
* p is a vector of parent pointers for a forest whose
* vertices are the integers 0 to n-1; p[root]==n.
* Output:
* q is a vector indexed by 0..n-1 such that q[i] is the
* i-th vertex in a postorder numbering of the tree.
*
* ( 2/7/95 modified by X.Li:
* q is a vector indexed by 0:n-1 such that vertex i is the
* q[i]-th vertex in a postorder numbering of the tree.
* That is, this is the inverse of the previous q. )
*
* In the child structure, lower-numbered children are represented
* first, so that a tree which is already numbered in postorder
* will not have its order changed.
*
* Written by John Gilbert, Xerox, 10 Dec 1990.
* Based on code written by John Gilbert at CMI in 1987.
*/
static int *first_kid, *next_kid; /* Linked list of children. */
static int *post, postnum;
static
/*
* Depth-first search from vertex v.
*/
void etdfs (
int v
)
{
int w;
for (w = first_kid[v]; w != -1; w = next_kid[w]) {
etdfs (w);
}
/* post[postnum++] = v; in Matlab */
post[v] = postnum++; /* Modified by X.Li on 2/14/95 */
}
/*
* Post order a tree
*/
int *TreePostorder(
int n,
int *parent
)
{
int v, dad;
/* Allocate storage for working arrays and results */
first_kid = mxCallocInt (n+1);
next_kid = mxCallocInt (n+1);
post = mxCallocInt (n+1);
/* Set up structure describing children */
for (v = 0; v <= n; first_kid[v++] = -1);
for (v = n-1; v >= 0; v--) {
dad = parent[v];
next_kid[v] = first_kid[dad];
first_kid[dad] = v;
}
/* Depth-first search from dummy root vertex #n */
postnum = 0;
etdfs (n);
SUPERLU_FREE (first_kid);
SUPERLU_FREE (next_kid);
return post;
}
/*
* p = spsymetree (A);
*
* Find the elimination tree for symmetric matrix A.
* This uses Liu's algorithm, and runs in time O(nz*log n).
*
* Input:
* Square sparse matrix A. No check is made for symmetry;
* elements below and on the diagonal are ignored.
* Numeric values are ignored, so any explicit zeros are
* treated as nonzero.
* Output:
* Integer array of parents representing the etree, with n
* meaning a root of the elimination forest.
* Note:
* This routine uses only the upper triangle, while sparse
* Cholesky (as in spchol.c) uses only the lower. Matlab's
* dense Cholesky uses only the upper. This routine could
* be modified to use the lower triangle either by transposing
* the matrix or by traversing it by rows with auxiliary
* pointer and link arrays.
*
* John R. Gilbert, Xerox, 10 Dec 1990
* Based on code by JRG dated 1987, 1988, and 1990.
* Modified by X.S. Li, November 1999.
*/
/*
* Symmetric elimination tree
*/
int
sp_symetree(
int *acolst, int *acolend, /* column starts and ends past 1 */
int *arow, /* row indices of A */
int n, /* dimension of A */
int *parent /* parent in elim tree */
)
{
int *root; /* root of subtree of etree */
int rset, cset;
int row, col;
int rroot;
int p;
root = mxCallocInt (n);
initialize_disjoint_sets (n);
for (col = 0; col < n; col++) {
cset = make_set (col);
root[cset] = col;
parent[col] = n; /* Matlab */
for (p = acolst[col]; p < acolend[col]; p++) {
row = arow[p];
if (row >= col) continue;
rset = find (row);
rroot = root[rset];
if (rroot != col) {
parent[rroot] = col;
cset = link (cset, rset);
root[cset] = col;
}
}
}
SUPERLU_FREE (root);
finalize_disjoint_sets ();
return 0;
} /* SP_SYMETREE */
|