1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
/*
* -- SuperLU routine (version 2.0) --
* Univ. of California Berkeley, Xerox Palo Alto Research Center,
* and Lawrence Berkeley National Lab.
* November 15, 1997
*
*/
#include <stdio.h>
#include <stdlib.h>
#include "zsp_defs.h"
/* Eat up the rest of the current line */
int zDumpLine(FILE *fp)
{
register int c;
while ((c = fgetc(fp)) != '\n') ;
return 0;
}
int zParseIntFormat(char *buf, int *num, int *size)
{
char *tmp;
tmp = buf;
while (*tmp++ != '(') ;
sscanf(tmp, "%d", num);
while (*tmp != 'I' && *tmp != 'i') ++tmp;
++tmp;
sscanf(tmp, "%d", size);
return 0;
}
int zParseFloatFormat(char *buf, int *num, int *size)
{
char *tmp, *period;
tmp = buf;
while (*tmp++ != '(') ;
*num = atoi(tmp); /*sscanf(tmp, "%d", num);*/
while (*tmp != 'E' && *tmp != 'e' && *tmp != 'D' && *tmp != 'd'
&& *tmp != 'F' && *tmp != 'f') {
/* May find kP before nE/nD/nF, like (1P6F13.6). In this case the
num picked up refers to P, which should be skipped. */
if (*tmp=='p' || *tmp=='P') {
++tmp;
*num = atoi(tmp); /*sscanf(tmp, "%d", num);*/
} else {
++tmp;
}
}
++tmp;
period = tmp;
while (*period != '.' && *period != ')') ++period ;
*period = '\0';
*size = atoi(tmp); /*sscanf(tmp, "%2d", size);*/
return 0;
}
int zReadVector(FILE *fp, int n, int *where, int perline, int persize)
{
register int i, j, item;
char tmp, buf[100];
i = 0;
while (i < n) {
fgets(buf, 100, fp); /* read a line at a time */
for (j=0; j<perline && i<n; j++) {
tmp = buf[(j+1)*persize]; /* save the char at that place */
buf[(j+1)*persize] = 0; /* null terminate */
item = atoi(&buf[j*persize]);
buf[(j+1)*persize] = tmp; /* recover the char at that place */
where[i++] = item - 1;
}
}
return 0;
}
/* Read complex numbers as pairs of (real, imaginary) */
int zReadValues(FILE *fp, int n, doublecomplex *destination, int perline, int persize)
{
register int i, j, k, s, pair;
register double realpart;
char tmp, buf[100];
i = pair = 0;
while (i < n) {
fgets(buf, 100, fp); /* read a line at a time */
for (j=0; j<perline && i<n; j++) {
tmp = buf[(j+1)*persize]; /* save the char at that place */
buf[(j+1)*persize] = 0; /* null terminate */
s = j*persize;
for (k = 0; k < persize; ++k) /* No D_ format in C */
if ( buf[s+k] == 'D' || buf[s+k] == 'd' ) buf[s+k] = 'E';
if ( pair == 0 ) {
/* The value is real part */
realpart = atof(&buf[s]);
pair = 1;
} else {
/* The value is imaginary part */
destination[i].r = realpart;
destination[i++].i = atof(&buf[s]);
pair = 0;
}
buf[(j+1)*persize] = tmp; /* recover the char at that place */
}
}
return 0;
}
void
zreadhb(int *nrow, int *ncol, int *nonz,
doublecomplex **nzval, int **rowind, int **colptr)
{
/*
* Purpose
* =======
*
* Read a DOUBLE COMPLEX PRECISION matrix stored in Harwell-Boeing format
* as described below.
*
* Line 1 (A72,A8)
* Col. 1 - 72 Title (TITLE)
* Col. 73 - 80 Key (KEY)
*
* Line 2 (5I14)
* Col. 1 - 14 Total number of lines excluding header (TOTCRD)
* Col. 15 - 28 Number of lines for pointers (PTRCRD)
* Col. 29 - 42 Number of lines for row (or variable) indices (INDCRD)
* Col. 43 - 56 Number of lines for numerical values (VALCRD)
* Col. 57 - 70 Number of lines for right-hand sides (RHSCRD)
* (including starting guesses and solution vectors
* if present)
* (zero indicates no right-hand side data is present)
*
* Line 3 (A3, 11X, 4I14)
* Col. 1 - 3 Matrix type (see below) (MXTYPE)
* Col. 15 - 28 Number of rows (or variables) (NROW)
* Col. 29 - 42 Number of columns (or elements) (NCOL)
* Col. 43 - 56 Number of row (or variable) indices (NNZERO)
* (equal to number of entries for assembled matrices)
* Col. 57 - 70 Number of elemental matrix entries (NELTVL)
* (zero in the case of assembled matrices)
* Line 4 (2A16, 2A20)
* Col. 1 - 16 Format for pointers (PTRFMT)
* Col. 17 - 32 Format for row (or variable) indices (INDFMT)
* Col. 33 - 52 Format for numerical values of coefficient matrix (VALFMT)
* Col. 53 - 72 Format for numerical values of right-hand sides (RHSFMT)
*
* Line 5 (A3, 11X, 2I14) Only present if there are right-hand sides present
* Col. 1 Right-hand side type:
* F for full storage or M for same format as matrix
* Col. 2 G if a starting vector(s) (Guess) is supplied. (RHSTYP)
* Col. 3 X if an exact solution vector(s) is supplied.
* Col. 15 - 28 Number of right-hand sides (NRHS)
* Col. 29 - 42 Number of row indices (NRHSIX)
* (ignored in case of unassembled matrices)
*
* The three character type field on line 3 describes the matrix type.
* The following table lists the permitted values for each of the three
* characters. As an example of the type field, RSA denotes that the matrix
* is real, symmetric, and assembled.
*
* First Character:
* R Real matrix
* C Complex matrix
* P Pattern only (no numerical values supplied)
*
* Second Character:
* S Symmetric
* U Unsymmetric
* H Hermitian
* Z Skew symmetric
* R Rectangular
*
* Third Character:
* A Assembled
* E Elemental matrices (unassembled)
*
*/
register int i, numer_lines = 0, rhscrd = 0;
int tmp, colnum, colsize, rownum, rowsize, valnum, valsize;
char buf[100], type[4], key[10];
FILE *fp;
fp = stdin;
/* Line 1 */
fgets(buf, 100, fp);
fputs(buf, stdout);
#if 0
fscanf(fp, "%72c", buf); buf[72] = 0;
printf("Title: %s", buf);
fscanf(fp, "%8c", key); key[8] = 0;
printf("Key: %s\n", key);
zDumpLine(fp);
#endif
/* Line 2 */
for (i=0; i<5; i++) {
fscanf(fp, "%14c", buf); buf[14] = 0;
sscanf(buf, "%d", &tmp);
if (i == 3) numer_lines = tmp;
if (i == 4 && tmp) rhscrd = tmp;
}
zDumpLine(fp);
/* Line 3 */
fscanf(fp, "%3c", type);
fscanf(fp, "%11c", buf); /* pad */
type[3] = 0;
#ifdef DEBUG
printf("Matrix type %s\n", type);
#endif
fscanf(fp, "%14c", buf); sscanf(buf, "%d", nrow);
fscanf(fp, "%14c", buf); sscanf(buf, "%d", ncol);
fscanf(fp, "%14c", buf); sscanf(buf, "%d", nonz);
fscanf(fp, "%14c", buf); sscanf(buf, "%d", &tmp);
if (tmp != 0)
printf("This is not an assembled matrix!\n");
if (*nrow != *ncol)
printf("Matrix is not square.\n");
zDumpLine(fp);
/* Allocate storage for the three arrays ( nzval, rowind, colptr ) */
zallocateA(*ncol, *nonz, nzval, rowind, colptr);
/* Line 4: format statement */
fscanf(fp, "%16c", buf);
zParseIntFormat(buf, &colnum, &colsize);
fscanf(fp, "%16c", buf);
zParseIntFormat(buf, &rownum, &rowsize);
fscanf(fp, "%20c", buf);
zParseFloatFormat(buf, &valnum, &valsize);
fscanf(fp, "%20c", buf);
zDumpLine(fp);
/* Line 5: right-hand side */
if ( rhscrd ) zDumpLine(fp); /* skip RHSFMT */
#ifdef DEBUG
printf("%d rows, %d nonzeros\n", *nrow, *nonz);
printf("colnum %d, colsize %d\n", colnum, colsize);
printf("rownum %d, rowsize %d\n", rownum, rowsize);
printf("valnum %d, valsize %d\n", valnum, valsize);
#endif
zReadVector(fp, *ncol+1, *colptr, colnum, colsize);
zReadVector(fp, *nonz, *rowind, rownum, rowsize);
if ( numer_lines ) {
zReadValues(fp, *nonz, *nzval, valnum, valsize);
}
fclose(fp);
}
|