File: _dsuperlumodule.c

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (251 lines) | stat: -rw-r--r-- 7,567 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

/* Copyright 1999 Travis Oliphant
   Permision to copy and modified this file is granted under the LGPL.
   No warranty is expressed or IMPLIED
*/

/* 
   This file implements glue between the SuperLU library for 
   sparse matrix inversion and Python.
*/


/* We want a low-level interface to:
   xGSSV

   These will be done in separate files due to the include structure of
   SuperLU.

   Define a user abort and a user malloc and free (to keep pointers 
     that will be released on errors)
*/

#include "Python.h"
#include "SuperLU/SRC/dsp_defs.h"
#include "_superluobject.h"
#include <setjmp.h>

extern jmp_buf _superlu_py_jmpbuf;


static char doc_dgssv[] = "Direct inversion of sparse matrix.\n\nX = dgssv(A,B) solves A*X = B for X.";

static PyObject *Py_dgssv (PyObject *self, PyObject *args, PyObject *kwdict)
{
  PyObject *Py_B=NULL, *Py_X=NULL;
  PyArrayObject *nzvals=NULL;
  PyArrayObject *colind=NULL, *rowptr=NULL;
  int N, nnz;
  int info;
  int csc=0, permc_spec=2;
  int *perm_r=NULL, *perm_c=NULL;
  SuperMatrix A, B, L, U;
  superlu_options_t options;
  SuperLUStat_t stat;
  

  static char *kwlist[] = {"N","nnz","nzvals","colind","rowptr","B", "csc", "permc_spec",NULL};

  /* Get input arguments */
  if (!PyArg_ParseTupleAndKeywords(args, kwdict, "iiO!O!O!O|ii", kwlist, &N, &nnz, &PyArray_Type, &nzvals, &PyArray_Type, &colind, &PyArray_Type, &rowptr, &Py_B, &csc, &permc_spec))
    return NULL;

  if (!_CHECK_INTEGER(colind) || !_CHECK_INTEGER(rowptr)) {
          PyErr_SetString(PyExc_TypeError, "colind and rowptr must be of type cint");
          return NULL;
  }

  /* Create Space for output */
  Py_X = PyArray_CopyFromObject(Py_B,PyArray_DOUBLE,1,2);
  if (Py_X == NULL) return NULL;

  if (csc) {
      if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_DOUBLE)) {
          Py_DECREF(Py_X);
          return NULL;
      }
  }
  else {
      if (NRFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_DOUBLE)) {
          Py_DECREF(Py_X);
          return NULL;
      }
  }
  
  if (DenseSuper_from_Numeric(&B, Py_X)) {
          Destroy_SuperMatrix_Store(&A);  
          Py_DECREF(Py_X);
          return NULL;
  }

  /* B and Py_X  share same data now but Py_X "owns" it */
    
  /* Setup options */
  
  if (setjmp(_superlu_py_jmpbuf)) goto fail;
  else {
      perm_c = intMalloc(N);
      perm_r = intMalloc(N);
      set_default_options(&options);
      options.ColPerm=superlu_module_getpermc(permc_spec);
      StatInit(&stat);

  /* Compute direct inverse of sparse Matrix */
      dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
  }
  
  SUPERLU_FREE(perm_r);
  SUPERLU_FREE(perm_c);
  Destroy_SuperMatrix_Store(&A);  /* holds just a pointer to the data */
  Destroy_SuperMatrix_Store(&B);
  Destroy_SuperNode_Matrix(&L);
  Destroy_CompCol_Matrix(&U);
  StatFree(&stat);
 
  return Py_BuildValue("Ni", Py_X, info);

 fail:

  SUPERLU_FREE(perm_r);
  SUPERLU_FREE(perm_c);
  Destroy_SuperMatrix_Store(&A);  /* holds just a pointer to the data */
  Destroy_SuperMatrix_Store(&B);
  Destroy_SuperNode_Matrix(&L);
  Destroy_CompCol_Matrix(&U);
  StatFree(&stat);  
  Py_XDECREF(Py_X);
  return NULL;
}


/*******************************Begin Code Adapted from PySparse *****************/


static char doc_dgstrf[] = "dgstrf(A, ...)\n\
\n\
performs a factorization of the sparse matrix A=*(N,nnz,nzvals,rowind,colptr) and \n\
returns a factored_lu object.\n\
\n\
arguments\n\
---------\n\
\n\
Matrix to be factorized is represented as N,nnz,nzvals,rowind,colptr\n\
  as separate arguments.  This is compressed sparse column representation.\n\
\n\
N         number of rows and columns \n\
nnz       number of non-zero elements\n\
nzvals    non-zero values \n\
rowind    row-index for this column (same size as nzvals)\n\
colptr    index into rowind for first non-zero value in this column\n\
          size is (N+1).  Last value should be nnz. \n\
\n\
additional keyword arguments:\n\
-----------------------------\n\
permc_spec          specifies the matrix ordering used for the factorization\n\
                    0: natural ordering\n\
                    1: MMD applied to the structure of A^T * A\n\
                    2: MMD applied to the structure of A^T + A\n\
                    3: COLAMD, approximate minimum degree column ordering\n\
                    (default: 2)\n\
\n\
diag_pivot_thresh   threshhold for partial pivoting.\n\
                    0.0 <= diag_pivot_thresh <= 1.0\n\
                    0.0 corresponds to no pivoting\n\
                    1.0 corresponds to partial pivoting\n\
                    (default: 1.0)\n\
\n\
drop_tol            drop tolerance parameter\n\
                    0.0 <= drop_tol <= 1.0\n\
                    0.0 corresponds to exact factorization\n\
                    CAUTION: the drop_tol is not implemented in SuperLU 2.0\n\
                    (default: 0.0)\n\
\n\
relax               to control degree of relaxing supernodes\n\
                    (default: 1)\n\
\n\
panel_size          a panel consist of at most panel_size consecutive columns.\n\
                    (default: 10)\n\
";

static PyObject *
Py_dgstrf(PyObject *self, PyObject *args, PyObject *keywds) {

  /* default value for SuperLU parameters*/
  double diag_pivot_thresh = 1.0;
  double drop_tol = 0.0;
  int relax = 1;
  int panel_size = 10;
  int permc_spec = 2;
  int N, nnz;
  PyArrayObject *rowind, *colptr, *nzvals;
  SuperMatrix A;
  PyObject *result;
  
  static char *kwlist[] = {"N","nnz","nzvals","rowind","colptr","permc_spec","diag_pivot_thresh", "drop_tol", "relax", "panel_size", NULL};

  int res = PyArg_ParseTupleAndKeywords(args, keywds, "iiO!O!O!|iddii", kwlist, 
                                        &N, &nnz,
					&PyArray_Type, &nzvals,
                                        &PyArray_Type, &rowind,
                                        &PyArray_Type, &colptr,
					&permc_spec,
					&diag_pivot_thresh,
					&drop_tol,
					&relax,
					&panel_size);
  if (!res)
    return NULL;

  if (!_CHECK_INTEGER(colptr) || !_CHECK_INTEGER(rowind)) {
          PyErr_SetString(PyExc_TypeError, "rowind and colptr must be of type cint");
          return NULL;
  }

  if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, rowind, colptr, PyArray_DOUBLE)) goto fail;
 
  result = newSciPyLUObject(&A, diag_pivot_thresh, drop_tol, relax, panel_size,\
                            permc_spec, PyArray_DOUBLE);
  if (result == NULL) goto fail;

  Destroy_SuperMatrix_Store(&A); /* arrays of input matrix will not be freed */  
  return result;

 fail:
  Destroy_SuperMatrix_Store(&A); /* arrays of input matrix will not be freed */
  return NULL;
}


/*******************************End Code Adapted from PySparse *****************/
   
static PyMethodDef dSuperLU_Methods[] = {
   {"dgssv", (PyCFunction) Py_dgssv, METH_VARARGS|METH_KEYWORDS, doc_dgssv},  
   {"dgstrf", (PyCFunction) Py_dgstrf, METH_VARARGS|METH_KEYWORDS, doc_dgstrf},
   /*
   {"_dgstrs", Py_dgstrs, METH_VARARGS, doc_dgstrs},
   {"_dgscon", Py_dgscon, METH_VARARGS, doc_dgscon},
   {"_dgsequ", Py_dgsequ, METH_VARARGS, doc_dgsequ},
   {"_dlaqgs", Py_dlaqgs, METH_VARARGS, doc_dlaqgs},
   {"_dgsrfs", Py_dgsrfs, METH_VARARGS, doc_dgsrfs}, */
  {NULL, NULL}
};


PyMODINIT_FUNC
init_dsuperlu(void)
{
  PyObject *m, *d;
  
  SciPySuperLUType.ob_type = &PyType_Type;

  m = Py_InitModule("_dsuperlu", dSuperLU_Methods);
  d = PyModule_GetDict(m);

  PyDict_SetItemString(d, "SciPyLUType", (PyObject *)&SciPySuperLUType);

  import_array();
}