1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* Copyright 1999 Travis Oliphant
Permision to copy and modified this file is granted under the LGPL.
No warranty is expressed or IMPLIED
*/
/*
This file implements glue between the SuperLU library for
sparse matrix inversion and Python.
*/
/* We want a low-level interface to:
xGSSV
These will be done in separate files due to the include structure of
SuperLU.
Define a user abort and a user malloc and free (to keep pointers
that will be released on errors)
*/
#include "Python.h"
#include "SuperLU/SRC/dsp_defs.h"
#include "_superluobject.h"
#include <setjmp.h>
extern jmp_buf _superlu_py_jmpbuf;
static char doc_dgssv[] = "Direct inversion of sparse matrix.\n\nX = dgssv(A,B) solves A*X = B for X.";
static PyObject *Py_dgssv (PyObject *self, PyObject *args, PyObject *kwdict)
{
PyObject *Py_B=NULL, *Py_X=NULL;
PyArrayObject *nzvals=NULL;
PyArrayObject *colind=NULL, *rowptr=NULL;
int N, nnz;
int info;
int csc=0, permc_spec=2;
int *perm_r=NULL, *perm_c=NULL;
SuperMatrix A, B, L, U;
superlu_options_t options;
SuperLUStat_t stat;
static char *kwlist[] = {"N","nnz","nzvals","colind","rowptr","B", "csc", "permc_spec",NULL};
/* Get input arguments */
if (!PyArg_ParseTupleAndKeywords(args, kwdict, "iiO!O!O!O|ii", kwlist, &N, &nnz, &PyArray_Type, &nzvals, &PyArray_Type, &colind, &PyArray_Type, &rowptr, &Py_B, &csc, &permc_spec))
return NULL;
if (!_CHECK_INTEGER(colind) || !_CHECK_INTEGER(rowptr)) {
PyErr_SetString(PyExc_TypeError, "colind and rowptr must be of type cint");
return NULL;
}
/* Create Space for output */
Py_X = PyArray_CopyFromObject(Py_B,PyArray_DOUBLE,1,2);
if (Py_X == NULL) return NULL;
if (csc) {
if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_DOUBLE)) {
Py_DECREF(Py_X);
return NULL;
}
}
else {
if (NRFormat_from_spMatrix(&A, N, N, nnz, nzvals, colind, rowptr, PyArray_DOUBLE)) {
Py_DECREF(Py_X);
return NULL;
}
}
if (DenseSuper_from_Numeric(&B, Py_X)) {
Destroy_SuperMatrix_Store(&A);
Py_DECREF(Py_X);
return NULL;
}
/* B and Py_X share same data now but Py_X "owns" it */
/* Setup options */
if (setjmp(_superlu_py_jmpbuf)) goto fail;
else {
perm_c = intMalloc(N);
perm_r = intMalloc(N);
set_default_options(&options);
options.ColPerm=superlu_module_getpermc(permc_spec);
StatInit(&stat);
/* Compute direct inverse of sparse Matrix */
dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);
}
SUPERLU_FREE(perm_r);
SUPERLU_FREE(perm_c);
Destroy_SuperMatrix_Store(&A); /* holds just a pointer to the data */
Destroy_SuperMatrix_Store(&B);
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
StatFree(&stat);
return Py_BuildValue("Ni", Py_X, info);
fail:
SUPERLU_FREE(perm_r);
SUPERLU_FREE(perm_c);
Destroy_SuperMatrix_Store(&A); /* holds just a pointer to the data */
Destroy_SuperMatrix_Store(&B);
Destroy_SuperNode_Matrix(&L);
Destroy_CompCol_Matrix(&U);
StatFree(&stat);
Py_XDECREF(Py_X);
return NULL;
}
/*******************************Begin Code Adapted from PySparse *****************/
static char doc_dgstrf[] = "dgstrf(A, ...)\n\
\n\
performs a factorization of the sparse matrix A=*(N,nnz,nzvals,rowind,colptr) and \n\
returns a factored_lu object.\n\
\n\
arguments\n\
---------\n\
\n\
Matrix to be factorized is represented as N,nnz,nzvals,rowind,colptr\n\
as separate arguments. This is compressed sparse column representation.\n\
\n\
N number of rows and columns \n\
nnz number of non-zero elements\n\
nzvals non-zero values \n\
rowind row-index for this column (same size as nzvals)\n\
colptr index into rowind for first non-zero value in this column\n\
size is (N+1). Last value should be nnz. \n\
\n\
additional keyword arguments:\n\
-----------------------------\n\
permc_spec specifies the matrix ordering used for the factorization\n\
0: natural ordering\n\
1: MMD applied to the structure of A^T * A\n\
2: MMD applied to the structure of A^T + A\n\
3: COLAMD, approximate minimum degree column ordering\n\
(default: 2)\n\
\n\
diag_pivot_thresh threshhold for partial pivoting.\n\
0.0 <= diag_pivot_thresh <= 1.0\n\
0.0 corresponds to no pivoting\n\
1.0 corresponds to partial pivoting\n\
(default: 1.0)\n\
\n\
drop_tol drop tolerance parameter\n\
0.0 <= drop_tol <= 1.0\n\
0.0 corresponds to exact factorization\n\
CAUTION: the drop_tol is not implemented in SuperLU 2.0\n\
(default: 0.0)\n\
\n\
relax to control degree of relaxing supernodes\n\
(default: 1)\n\
\n\
panel_size a panel consist of at most panel_size consecutive columns.\n\
(default: 10)\n\
";
static PyObject *
Py_dgstrf(PyObject *self, PyObject *args, PyObject *keywds) {
/* default value for SuperLU parameters*/
double diag_pivot_thresh = 1.0;
double drop_tol = 0.0;
int relax = 1;
int panel_size = 10;
int permc_spec = 2;
int N, nnz;
PyArrayObject *rowind, *colptr, *nzvals;
SuperMatrix A;
PyObject *result;
static char *kwlist[] = {"N","nnz","nzvals","rowind","colptr","permc_spec","diag_pivot_thresh", "drop_tol", "relax", "panel_size", NULL};
int res = PyArg_ParseTupleAndKeywords(args, keywds, "iiO!O!O!|iddii", kwlist,
&N, &nnz,
&PyArray_Type, &nzvals,
&PyArray_Type, &rowind,
&PyArray_Type, &colptr,
&permc_spec,
&diag_pivot_thresh,
&drop_tol,
&relax,
&panel_size);
if (!res)
return NULL;
if (!_CHECK_INTEGER(colptr) || !_CHECK_INTEGER(rowind)) {
PyErr_SetString(PyExc_TypeError, "rowind and colptr must be of type cint");
return NULL;
}
if (NCFormat_from_spMatrix(&A, N, N, nnz, nzvals, rowind, colptr, PyArray_DOUBLE)) goto fail;
result = newSciPyLUObject(&A, diag_pivot_thresh, drop_tol, relax, panel_size,\
permc_spec, PyArray_DOUBLE);
if (result == NULL) goto fail;
Destroy_SuperMatrix_Store(&A); /* arrays of input matrix will not be freed */
return result;
fail:
Destroy_SuperMatrix_Store(&A); /* arrays of input matrix will not be freed */
return NULL;
}
/*******************************End Code Adapted from PySparse *****************/
static PyMethodDef dSuperLU_Methods[] = {
{"dgssv", (PyCFunction) Py_dgssv, METH_VARARGS|METH_KEYWORDS, doc_dgssv},
{"dgstrf", (PyCFunction) Py_dgstrf, METH_VARARGS|METH_KEYWORDS, doc_dgstrf},
/*
{"_dgstrs", Py_dgstrs, METH_VARARGS, doc_dgstrs},
{"_dgscon", Py_dgscon, METH_VARARGS, doc_dgscon},
{"_dgsequ", Py_dgsequ, METH_VARARGS, doc_dgsequ},
{"_dlaqgs", Py_dlaqgs, METH_VARARGS, doc_dlaqgs},
{"_dgsrfs", Py_dgsrfs, METH_VARARGS, doc_dgsrfs}, */
{NULL, NULL}
};
PyMODINIT_FUNC
init_dsuperlu(void)
{
PyObject *m, *d;
SciPySuperLUType.ob_type = &PyType_Type;
m = Py_InitModule("_dsuperlu", dSuperLU_Methods);
d = PyModule_GetDict(m);
PyDict_SetItemString(d, "SciPyLUType", (PyObject *)&SciPySuperLUType);
import_array();
}
|