1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
"""
Functions which are common and require SciPy Base and Level 1 SciPy
(special, linalg)
"""
import sys
import numpy
from numpy import exp, asarray, arange, \
newaxis, hstack, product, array, where, \
zeros, extract, place, pi, sqrt, eye, poly1d, dot, r_
from numpy import who
__all__ = ['factorial','factorial2','factorialk','comb',
'central_diff_weights', 'derivative', 'pade', 'lena']
# XXX: the factorial functions could move to scipy.special, and the others
# to numpy perhaps?
def factorial(n,exact=0):
"""n! = special.gamma(n+1)
If exact==0, then floating point precision is used, otherwise
exact long integer is computed.
Notes:
- Array argument accepted only for exact=0 case.
- If n<0, the return value is 0.
"""
if exact:
if n < 0:
return 0L
n = long(n)
val = 1L
k = 1L
while (k < n+1L):
val = val*k
k += 1
return val
else:
from scipy import special
n = asarray(n)
sv = special.errprint(0)
vals = special.gamma(n+1)
sv = special.errprint(sv)
return where(n>=0,vals,0)
def factorial2(n,exact=0):
"""n!! = special.gamma(n/2+1)*2**((m+1)/2)/sqrt(pi) n odd
= 2**(n) * n! n even
If exact==0, then floating point precision is used, otherwise
exact long integer is computed.
Notes:
- Array argument accepted only for exact=0 case.
- If n<0, the return value is 0.
"""
if exact:
if n < -1:
return 0L
if n <= 0:
return 1L
n = long(n)
val = 1L
k = n
while (k > 0):
val = val*k
k -= 2
return val
else:
from scipy import special
n = asarray(n)
vals = zeros(n.shape,'d')
cond1 = (n % 2) & (n >= -1)
cond2 = (1-(n % 2)) & (n >= -1)
oddn = extract(cond1,n)
evenn = extract(cond2,n)
nd2o = oddn / 2.0
nd2e = evenn / 2.0
place(vals,cond1,special.gamma(nd2o+1)/sqrt(pi)*pow(2.0,nd2o+0.5))
place(vals,cond2,special.gamma(nd2e+1) * pow(2.0,nd2e))
return vals
def factorialk(n,k,exact=1):
"""n(!!...!) = multifactorial of order k
k times
"""
if exact:
if n < 1-k:
return 0L
if n<=0:
return 1L
n = long(n)
val = 1L
j = n
while (j > 0):
val = val*j
j -= k
return val
else:
raise NotImplementedError
def comb(N,k,exact=0):
"""Combinations of N things taken k at a time.
If exact==0, then floating point precision is used, otherwise
exact long integer is computed.
Notes:
- Array arguments accepted only for exact=0 case.
- If k > N, N < 0, or k < 0, then a 0 is returned.
"""
if exact:
if (k > N) or (N < 0) or (k < 0):
return 0L
N,k = map(long,(N,k))
top = N
val = 1L
while (top > (N-k)):
val *= top
top -= 1
n = 1L
while (n < k+1L):
val /= n
n += 1
return val
else:
from scipy import special
k,N = asarray(k), asarray(N)
lgam = special.gammaln
cond = (k <= N) & (N >= 0) & (k >= 0)
sv = special.errprint(0)
vals = exp(lgam(N+1) - lgam(N-k+1) - lgam(k+1))
sv = special.errprint(sv)
return where(cond, vals, 0.0)
def central_diff_weights(Np,ndiv=1):
"""Return weights for an Np-point central derivative of order ndiv
assuming equally-spaced function points.
If weights are in the vector w, then
derivative is w[0] * f(x-ho*dx) + ... + w[-1] * f(x+h0*dx)
Can be inaccurate for large number of points.
"""
assert (Np >= ndiv+1), "Number of points must be at least the derivative order + 1."
assert (Np % 2 == 1), "Odd-number of points only."
from scipy import linalg
ho = Np >> 1
x = arange(-ho,ho+1.0)
x = x[:,newaxis]
X = x**0.0
for k in range(1,Np):
X = hstack([X,x**k])
w = product(arange(1,ndiv+1),axis=0)*linalg.inv(X)[ndiv]
return w
def derivative(func,x0,dx=1.0,n=1,args=(),order=3):
"""Given a function, use a central difference formula with spacing dx to
compute the nth derivative at x0.
order is the number of points to use and must be odd.
Warning: Decreasing the step size too small can result in
round-off error.
"""
assert (order >= n+1), "Number of points must be at least the derivative order + 1."
assert (order % 2 == 1), "Odd number of points only."
# pre-computed for n=1 and 2 and low-order for speed.
if n==1:
if order == 3:
weights = array([-1,0,1])/2.0
elif order == 5:
weights = array([1,-8,0,8,-1])/12.0
elif order == 7:
weights = array([-1,9,-45,0,45,-9,1])/60.0
elif order == 9:
weights = array([3,-32,168,-672,0,672,-168,32,-3])/840.0
else:
weights = central_diff_weights(order,1)
elif n==2:
if order == 3:
weights = array([1,-2.0,1])
elif order == 5:
weights = array([-1,16,-30,16,-1])/12.0
elif order == 7:
weights = array([2,-27,270,-490,270,-27,2])/180.0
elif order == 9:
weights = array([-9,128,-1008,8064,-14350,8064,-1008,128,-9])/5040.0
else:
weights = central_diff_weights(order,2)
else:
weights = central_diff_weights(order, n)
val = 0.0
ho = order >> 1
for k in range(order):
val += weights[k]*func(x0+(k-ho)*dx,*args)
return val / product((dx,)*n,axis=0)
def pade(an, m):
"""Given Taylor series coefficients in an, return a Pade approximation to
the function as the ratio of two polynomials p / q where the order of q is m.
"""
from scipy import linalg
an = asarray(an)
N = len(an) - 1
n = N-m
if (n < 0):
raise ValueError, \
"Order of q <m> must be smaller than len(an)-1."
Akj = eye(N+1,n+1)
Bkj = zeros((N+1,m),'d')
for row in range(1,m+1):
Bkj[row,:row] = -(an[:row])[::-1]
for row in range(m+1,N+1):
Bkj[row,:] = -(an[row-m:row])[::-1]
C = hstack((Akj,Bkj))
pq = dot(linalg.inv(C),an)
p = pq[:n+1]
q = r_[1.0,pq[n+1:]]
return poly1d(p[::-1]), poly1d(q[::-1])
def lena():
import cPickle, os
fname = os.path.join(os.path.dirname(__file__),'lena.dat')
f = open(fname,'rb')
lena = array(cPickle.load(f))
f.close()
return lena
|