File: measurements.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (397 lines) | stat: -rw-r--r-- 15,187 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Copyright (C) 2003-2005 Peter J. Verveer
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#
# 3. The name of the author may not be used to endorse or promote
#    products derived from this software without specific prior
#    written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
# OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
# GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

import types
import math
import numpy
import _ni_support
import _nd_image
import morphology

def label(input, structure = None, output = None):
    """Label an array of objects.

    The structure that defines the object connections must be
    symmetric.  If no structuring element is provided an element is
    generated with a squared connectivity equal to one. This function
    returns a tuple consisting of the array of labels and the number
    of objects found. If an output array is provided only the number of
    objects found is returned.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if structure == None:
        structure = morphology.generate_binary_structure(input.ndim, 1)
    structure = numpy.asarray(structure, dtype = bool)
    if structure.ndim != input.ndim:
        raise RuntimeError, 'structure and input must have equal rank'
    for ii in structure.shape:
        if ii != 3:
            raise  RuntimeError, 'structure dimensions must be equal to 3'
    if not structure.flags.contiguous:
        structure = structure.copy()
    if isinstance(output, numpy.ndarray):
        if output.dtype.type != numpy.int32:
            raise RuntimeError, 'output type must be int32'
    else:
        output = numpy.int32
    output, return_value = _ni_support._get_output(output, input)
    max_label = _nd_image.label(input, structure, output)
    if return_value == None:
        return max_label
    else:
        return return_value, max_label

def find_objects(input, max_label = 0):
    """Find objects in a labeled array.

    The input must be an array with labeled objects. A list of slices
    into the array is returned that contain the objects. The list
    represents a sequence of the numbered objects. If a number is
    missing, None is returned instead of a slice. If max_label > 0, it
    gives the largest object number that is searched for, otherwise
    all are returned.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if max_label < 1:
        max_label = input.max()
    return _nd_image.find_objects(input, max_label)

def sum(input, labels = None, index = None):
    """Calculate the sum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.statistics(input, labels, index, 0)


def mean(input, labels = None, index = None):
    """Calculate the mean of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.statistics(input, labels, index, 1)


def variance(input, labels = None, index = None):
    """Calculate the variance of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.statistics(input, labels, index, 2)


def standard_deviation(input, labels = None, index = None):
    """Calculate the standard deviation of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    var = variance(input, labels, index)
    if (isinstance(var, types.ListType)):
        return [math.sqrt(x) for x in var]
    else:
        return math.sqrt(var)


def minimum(input, labels = None, index = None):
    """Calculate the minimum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.statistics(input, labels, index, 3)


def maximum(input, labels = None, index = None):
    """Calculate the maximum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.statistics(input, labels, index, 4)


def _index_to_position(index, shape):
    """Convert a linear index to a position"""
    if len(shape) > 0:
        pos = []
        stride = numpy.multiply.reduce(shape)
        for size in shape:
            stride = stride // size
            pos.append(index // stride)
            index -= pos[-1] * stride
        return tuple(pos)
    else:
        return 0


def minimum_position(input, labels = None, index = None):
    """Find the position of the minimum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    pos = _nd_image.statistics(input, labels, index, 5)
    if (isinstance(pos, types.ListType)):
        return [_index_to_position(x, input.shape) for x in pos]
    else:
        return _index_to_position(pos, input.shape)


def maximum_position(input, labels = None, index = None):
    """Find the position of the maximum of the values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    pos = _nd_image.statistics(input, labels, index, 6)
    if (isinstance(pos, types.ListType)):
        return [_index_to_position(x, input.shape) for x in pos]
    else:
        return _index_to_position(pos, input.shape)


def extrema(input, labels = None, index = None):
    """Calculate the minimum, the maximum and their positions of the
       values of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'


    min, max, minp, maxp = _nd_image.statistics(input, labels, index, 7)
    if (isinstance(minp, types.ListType)):
        minp = [_index_to_position(x, input.shape) for x in minp]
        maxp = [_index_to_position(x, input.shape) for x in maxp]
    else:
        minp = _index_to_position(minp, input.shape)
        maxp = _index_to_position(maxp, input.shape)
    return min, max, minp, maxp


def center_of_mass(input, labels = None, index = None):
    """Calculate the center of mass of of the array.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    return _nd_image.center_of_mass(input, labels, index)


def histogram(input, min, max, bins, labels = None, index = None):
    """Calculate a histogram of of the array.

    The histogram is defined by its minimum and maximum value and the
    number of bins.

    The index parameter is a single label number or a sequence of
    label numbers of the objects to be measured. If index is None, all
    values are used where labels is larger than zero.
    """
    input = numpy.asarray(input)
    if numpy.iscomplexobj(input):
        raise TypeError, 'Complex type not supported'
    if labels != None:
        labels = numpy.asarray(labels)
        labels = _broadcast(labels, input.shape)

        if labels.shape != input.shape:
            raise RuntimeError, 'input and labels shape are not equal'
    if bins < 1:
        raise RuntimeError, 'number of bins must be >= 1'
    if min >= max:
        raise RuntimeError, 'min must be < max'
    return _nd_image.histogram(input, min, max, bins, labels, index)

def watershed_ift(input, markers, structure = None, output = None):
    """Apply watershed from markers using a iterative forest transform
    algorithm.

    Negative markers are considered background markers which are
    processed after the other markers. A structuring element defining
    the connectivity of the object can be provided. If none is
    provided an element is generated iwth a squared connecitiviy equal
    to one. An output array can optionally be provided.
    """
    input = numpy.asarray(input)
    if input.dtype.type not in [numpy.uint8, numpy.uint16]:
        raise TypeError, 'only 8 and 16 unsigned inputs are supported'
    if structure == None:
        structure = morphology.generate_binary_structure(input.ndim, 1)
    structure = numpy.asarray(structure, dtype = bool)
    if structure.ndim != input.ndim:
        raise RuntimeError, 'structure and input must have equal rank'
    for ii in structure.shape:
        if ii != 3:
            raise  RuntimeError, 'structure dimensions must be equal to 3'
    if not structure.flags.contiguous:
        structure = structure.copy()
    markers = numpy.asarray(markers)
    if input.shape != markers.shape:
        raise RuntimeError, 'input and markers must have equal shape'

    integral_types = [numpy.int0,
                      numpy.int8,
                      numpy.int16,
                      numpy.int32,
                      numpy.int_,
                      numpy.int64,
                      numpy.intc,
                      numpy.intp]

    if markers.dtype.type not in integral_types:
        raise RuntimeError, 'marker should be of integer type'
    if isinstance(output, numpy.ndarray):
        if output.dtype.type not in integral_types:
            raise RuntimeError, 'output should be of integer type'
    else:
        output = markers.dtype
    output, return_value = _ni_support._get_output(output, input)
    _nd_image.watershed_ift(input, markers, structure, output)
    return return_value

def _broadcast(arr, sshape):
    """Return broadcast view of arr, else return None."""
    ashape = arr.shape
    return_value = numpy.zeros(sshape, arr.dtype)
    # Just return arr if they have the same shape
    if sshape == ashape:
        return arr
    srank = len(sshape)
    arank = len(ashape)

    aslices = []
    sslices = []
    for i in range(arank):
        aslices.append(slice(0, ashape[i], 1))

    for i in range(srank):
        sslices.append(slice(0, sshape[i], 1))
    return_value[sslices] = arr[aslices]
    return return_value