1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
#!/usr/bin/env python
__usage__ = """
First ensure that scipy core modules are installed.
Build interface to arpack
python setup.py build
Run tests locally:
python tests/test_arpack.py [-l<int>] [-v<int>]
"""
import sys
from numpy.testing import *
set_package_path()
from arpack import *
del sys.path[0]
import numpy
from scipy.linalg import eig,eigh,norm
class test_eigen_nonsymmetric(ScipyTestCase):
def get_a1(self,typ):
mat=numpy.array([[-2., -8., 1., 2., -5.],
[ 6., 6., 0., 2., 1.],
[ 0., 4., -2., 11., 0.],
[ 1., 6., 1., 0., -4.],
[ 2., -6., 4., 9., -3]],typ)
w=numpy.array([-2.21691+8.59661*1j,-2.21691-8.59661*1j,\
4.45961+3.80078*1j, 4.45961-3.80078*1j,\
-5.48541+0j],typ.upper())
return mat,w
def large_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.abs(aw)
num=numpy.abs(w)
exact.sort()
num.sort()
assert_array_almost_equal(num[-k:],exact[-k:],decimal=5)
def small_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.abs(aw)
num=numpy.abs(w)
exact.sort()
num.sort()
assert_array_almost_equal(num[:k],exact[:k],decimal=5)
def large_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.real(aw)
num=numpy.real(w)
exact.sort()
num.sort()
assert_array_almost_equal(num[-k:],exact[-k:],decimal=5)
def small_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.real(aw)
num=numpy.real(w)
exact.sort()
num.sort()
assert_array_almost_equal(num[:k],exact[:k],decimal=5)
def large_imag(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LI')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
print w
print aw
exact=numpy.imag(aw)
num=numpy.imag(w)
exact.sort()
num.sort()
assert_array_almost_equal(num[-k:],exact[-k:],decimal=5)
def small_imag(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SI')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.imag(aw)
num=numpy.imag(w)
exact.sort()
num.sort()
print num
assert_array_almost_equal(num[:k],exact[:k],decimal=5)
def check_type(self):
k=2
for typ in 'fd':
self.large_magnitude(typ,k)
self.small_magnitude(typ,k)
self.large_real(typ,k)
self.small_real(typ,k)
# Maybe my understanding of small imaginary and large imaginary
# isn't too keen. I don't understand why these return
# different answers than in the complex case (the latter seems correct)
# self.large_imag(typ,k)
# self.small_imag(typ,k)
class test_eigen_complex_nonsymmetric(ScipyTestCase):
def get_a1(self,typ):
mat=numpy.array([[-2., -8., 1., 2., -5.],
[ 6., 6., 0., 2., 1.],
[ 0., 4., -2., 11., 0.],
[ 1., 6., 1., 0., -4.],
[ 2., -6., 4., 9., -3]],typ)
w=numpy.array([-2.21691+8.59661*1j,-2.21691-8.59661*1j,\
4.45961+3.80078*1j, 4.45961-3.80078*1j,\
-5.48541+0j],typ.upper())
return mat,w
def large_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.abs(aw)
num=numpy.abs(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[-k:],decimal=5)
def small_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.abs(aw)
num=numpy.abs(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[:k],decimal=5)
def large_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.real(aw)
num=numpy.real(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[-k:],decimal=5)
def small_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.real(aw)
num=numpy.real(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[:k],decimal=5)
def large_imag(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LI')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.imag(aw)
num=numpy.imag(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[-k:],decimal=5)
def small_imag(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SI')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
exact=numpy.imag(aw)
num=numpy.imag(w)
exact.sort()
num.sort()
assert_array_almost_equal(num,exact[:k],decimal=5)
def check_type(self):
k=2
for typ in 'FD':
self.large_magnitude(typ,k)
self.small_magnitude(typ,k)
self.large_real(typ,k)
self.small_real(typ,k)
self.large_imag(typ,k)
self.small_imag(typ,k)
class test_eigen_symmetric(ScipyTestCase):
def get_a1(self,typ):
mat_a1=numpy.array([[ 2., 0., 0., -1., 0., -1.],
[ 0., 2., 0., -1., 0., -1.],
[ 0., 0., 2., -1., 0., -1.],
[-1., -1., -1., 4., 0., -1.],
[ 0., 0., 0., 0., 1., -1.],
[-1., -1., -1., -1., -1., 5.]],
typ)
w = [0,1,2,2,5,6] # eigenvalues of a1
return mat_a1,w
def large_eigenvalues(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='LM',tol=1e-7)
assert_array_almost_equal(w,aw[-k:])
def small_eigenvalues(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='SM')
assert_array_almost_equal(w,aw[:k])
def end_eigenvalues(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='BE')
exact=[aw[0],aw[-1]]
assert_array_almost_equal(w,exact)
def large_eigenvectors(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='LM')
ew,ev = eigh(a)
ind=ew.argsort()
assert_array_almost_equal(w,numpy.take(ew,ind[-k:]))
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
def small_eigenvectors(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='SM',tol=1e-7)
ew,ev = eigh(a)
ind=ew.argsort()
assert_array_almost_equal(w,numpy.take(ew,ind[:k]))
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
def end_eigenvectors(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen_symmetric(a,k,which='BE')
ew,ev = eigh(a)
ind=ew.argsort()
exact=numpy.concatenate(([ind[:k/2],ind[-k/2:]]))
assert_array_almost_equal(w,numpy.take(ew,exact))
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
def check_eigenvectors(self):
k=2
for typ in 'fd':
self.large_eigenvectors(typ,k)
self.small_eigenvectors(typ,k)
self.end_eigenvectors(typ,k)
def check_type(self):
k=2
for typ in 'fd':
self.large_eigenvalues(typ,k)
self.small_eigenvalues(typ,k)
self.end_eigenvalues(typ,k)
class test_eigen_complex_symmetric(ScipyTestCase):
def get_a1(self,typ):
mat_a1=numpy.array([[ 2., 0., 0., -1., 0., -1.],
[ 0., 2., 0., -1., 0., -1.],
[ 0., 0., 2., -1., 0., -1.],
[-1., -1., -1., 4., 0., -1.],
[ 0., 0., 0., 0., 1., -1.],
[-1., -1., -1., -1., -1., 5.]],
typ)
w = numpy.array([0+0j,1+0j,2+0j,2+0j,5+0j,6+0j]) # eigenvalues of a1
return mat_a1,w
def large_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
aw.real.sort()
w.real.sort()
assert_array_almost_equal(w,aw[-k:])
def small_magnitude(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SM')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
aw.real.sort()
w.real.sort()
assert_array_almost_equal(w,aw[:k])
def large_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='LR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i],decimal=5)
aw.real.sort()
w.real.sort()
assert_array_almost_equal(w,aw[-k:],decimal=5)
def small_real(self,typ,k):
a,aw = self.get_a1(typ)
w,v = eigen(a,k,which='SR')
for i in range(k):
assert_array_almost_equal(sb.dot(a,v[:,i]),w[i]*v[:,i])
aw.real.sort()
w.real.sort()
assert_array_almost_equal(w,aw[:k])
def check_complex_symmetric(self):
k=2
for typ in 'FD':
self.large_magnitude(typ,k)
self.small_magnitude(typ,k)
self.large_real(typ,k)
self.small_real(typ,k)
if __name__ == "__main__":
ScipyTest().run()
|