1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
#include "Python.h"
#include <stdlib.h>
#include <map>
#include "VoronoiDiagramGenerator.h"
#include "delaunay_utils.h"
#include "natneighbors.h"
#include "numpy/noprefix.h"
using namespace std;
extern "C" {
static void reorder_edges(int npoints, int ntriangles,
double *x, double *y,
int *edge_db, int *tri_edges, int *tri_nbrs)
{
int neighbors[3], nodes[3];
int i, tmp;
int case1, case2;
for (i=0; i<ntriangles; i++) {
nodes[0] = INDEX2(edge_db, INDEX3(tri_edges,i,0), 0);
nodes[1] = INDEX2(edge_db, INDEX3(tri_edges,i,0), 1);
tmp = INDEX2(edge_db, INDEX3(tri_edges,i,1), 0);
if (tmp == nodes[0]) {
case1 = 1;
nodes[2] = INDEX2(edge_db, INDEX3(tri_edges,i,1), 1);
} else if (tmp == nodes[1]) {
case1 = 0;
nodes[2] = INDEX2(edge_db, INDEX3(tri_edges,i,1), 1);
} else if (INDEX2(edge_db, INDEX3(tri_edges,i,1), 1) == nodes[0]) {
case1 = 1;
nodes[2] = tmp;
} else {
case1 = 0;
nodes[2] = tmp;
}
if (ONRIGHT(x[nodes[0]], y[nodes[0]],
x[nodes[1]], y[nodes[1]],
x[nodes[2]], y[nodes[2]])) {
// flip to make counter-clockwise
tmp = nodes[2];
nodes[2] = nodes[1];
nodes[1] = tmp;
case2 = 1;
} else case2 = 0;
// I worked it out on paper. You're just gonna have to trust me on this.
if (!case1 && !case2) {
neighbors[0] = INDEX3(tri_nbrs, i, 1);
neighbors[1] = INDEX3(tri_nbrs, i, 2);
neighbors[2] = INDEX3(tri_nbrs, i, 0);
} else if (case1 && !case2) {
neighbors[0] = INDEX3(tri_nbrs, i, 2);
neighbors[1] = INDEX3(tri_nbrs, i, 1);
neighbors[2] = INDEX3(tri_nbrs, i, 0);
} else if (!case1 && case2) {
neighbors[0] = INDEX3(tri_nbrs, i, 1);
neighbors[1] = INDEX3(tri_nbrs, i, 0);
neighbors[2] = INDEX3(tri_nbrs, i, 2);
} else {
neighbors[0] = INDEX3(tri_nbrs, i, 2);
neighbors[1] = INDEX3(tri_nbrs, i, 0);
neighbors[2] = INDEX3(tri_nbrs, i, 1);
}
// Not trusting me? Okay, let's go through it:
// We have three edges to deal with and three nodes. Without loss
// of generality, let's label the nodes A, B, and C with (A, B)
// forming the first edge in the order they arrive on input.
// Then there are eight possibilities as to how the other edge-tuples
// may be labeled, but only two variations that are going to affect the
// output:
//
// AB AB
// BC (CB) AC (CA)
// CA (AC) BC (CB)
//
// The distinction is whether A is in the second edge or B is.
// This is the test "case1" above.
//
// The second test we need to perform is for counter-clockwiseness.
// Again, there are only two variations that will affect the outcome:
// either ABC is counter-clockwise, or it isn't. In the former case,
// we're done setting the node order, we just need to associate the
// appropriate neighbor triangles with their opposite nodes, something
// which can be done by inspection. In the latter case, to order the
// nodes counter-clockwise, we only have to switch B and C to get
// nodes ACB. Then we simply set the neighbor list by inspection again.
//
// CCW CW
// AB
// BC 120 102 -+
// CA |
// +- neighbor order
// AB |
// AC 210 201 -+
// BC
// ABC ACB -+- node order
INDEX3(tri_edges,i,0) = nodes[0];
INDEX3(tri_edges,i,1) = nodes[1];
INDEX3(tri_edges,i,2) = nodes[2];
INDEX3(tri_nbrs,i,0) = neighbors[0];
INDEX3(tri_nbrs,i,1) = neighbors[1];
INDEX3(tri_nbrs,i,2) = neighbors[2];
}
}
static PyObject* getMesh(int npoints, double *x, double *y)
{
PyObject *vertices, *edge_db, *tri_edges, *tri_nbrs;
PyObject *temp;
int tri0, tri1, reg0, reg1;
double tri0x, tri0y, tri1x, tri1y;
int length, numtri, i, j;
intp dim[MAX_DIMS];
int *edge_db_ptr, *tri_edges_ptr, *tri_nbrs_ptr;
double *vertices_ptr;
VoronoiDiagramGenerator vdg;
vdg.generateVoronoi(x, y, npoints, -100, 100, -100, 100, 0);
vdg.getNumbers(length, numtri);
dim[0] = length;
dim[1] = 2;
edge_db = PyArray_SimpleNew(2, dim, PyArray_INT);
if (!edge_db) goto fail;
edge_db_ptr = (int*)PyArray_DATA(edge_db);
dim[0] = numtri;
vertices = PyArray_SimpleNew(2, dim, PyArray_DOUBLE);
if (!vertices) goto fail;
vertices_ptr = (double*)PyArray_DATA(vertices);
dim[1] = 3;
tri_edges = PyArray_SimpleNew(2, dim, PyArray_INT);
if (!tri_edges) goto fail;
tri_edges_ptr = (int*)PyArray_DATA(tri_edges);
tri_nbrs = PyArray_SimpleNew(2, dim, PyArray_INT);
if (!tri_nbrs) goto fail;
tri_nbrs_ptr = (int*)PyArray_DATA(tri_nbrs);
for (i=0; i<(3*numtri); i++) {
tri_edges_ptr[i] = tri_nbrs_ptr[i] = -1;
}
vdg.resetEdgeListIter();
i = -1;
while (vdg.getNextDelaunay(tri0, tri0x, tri0y, tri1, tri1x, tri1y, reg0, reg1)) {
i++;
INDEX2(edge_db_ptr,i,0) = reg0;
INDEX2(edge_db_ptr,i,1) = reg1;
if (tri0 > -1) {
INDEX2(vertices_ptr,tri0,0) = tri0x;
INDEX2(vertices_ptr,tri0,1) = tri0y;
for (j=0; j<3; j++) {
if (INDEX3(tri_edges_ptr,tri0,j) == i) break;
if (INDEX3(tri_edges_ptr,tri0,j) == -1) {
INDEX3(tri_edges_ptr,tri0,j) = i;
INDEX3(tri_nbrs_ptr,tri0,j) = tri1;
break;
}
}
}
if (tri1 > -1) {
INDEX2(vertices_ptr,tri1,0) = tri1x;
INDEX2(vertices_ptr,tri1,1) = tri1y;
for (j=0; j<3; j++) {
if (INDEX3(tri_edges_ptr,tri1,j) == i) break;
if (INDEX3(tri_edges_ptr,tri1,j) == -1) {
INDEX3(tri_edges_ptr,tri1,j) = i;
INDEX3(tri_nbrs_ptr,tri1,j) = tri0;
break;
}
}
}
}
// tri_edges contains lists of edges; convert to lists of nodes in
// counterclockwise order and reorder tri_nbrs to match. Each node
// corresponds to the edge opposite it in the triangle.
reorder_edges(npoints, numtri, x, y, edge_db_ptr, tri_edges_ptr,
tri_nbrs_ptr);
temp = Py_BuildValue("(OOOO)", vertices, edge_db, tri_edges, tri_nbrs);
if (!temp) goto fail;
Py_DECREF(vertices);
Py_DECREF(edge_db);
Py_DECREF(tri_edges);
Py_DECREF(tri_nbrs);
return temp;
fail:
Py_XDECREF(vertices);
Py_XDECREF(edge_db);
Py_XDECREF(tri_edges);
Py_XDECREF(tri_nbrs);
return NULL;
}
static PyObject *linear_planes(int ntriangles, double *x, double *y, double *z,
int *nodes)
{
intp dims[2];
PyObject *planes;
int i;
double *planes_ptr;
double x02, y02, z02, x12, y12, z12, xy0212;
dims[0] = ntriangles;
dims[1] = 3;
planes = PyArray_SimpleNew(2, dims, PyArray_DOUBLE);
if (!planes) return NULL;
planes_ptr = (double *)PyArray_DATA(planes);
for (i=0; i<ntriangles; i++) {
x02 = x[INDEX3(nodes,i,0)] - x[INDEX3(nodes,i,2)];
y02 = y[INDEX3(nodes,i,0)] - y[INDEX3(nodes,i,2)];
z02 = z[INDEX3(nodes,i,0)] - z[INDEX3(nodes,i,2)];
x12 = x[INDEX3(nodes,i,1)] - x[INDEX3(nodes,i,2)];
y12 = y[INDEX3(nodes,i,1)] - y[INDEX3(nodes,i,2)];
z12 = z[INDEX3(nodes,i,1)] - z[INDEX3(nodes,i,2)];
if (y12 != 0.0) {
xy0212 = y02/y12;
INDEX3(planes_ptr,i,0) = (z02 - z12 * xy0212) / (x02 - x12 * xy0212);
INDEX3(planes_ptr,i,1) = (z12 - INDEX3(planes_ptr,i,0)*x12) / y12;
INDEX3(planes_ptr,i,2) = (z[INDEX3(nodes,i,2)] -
INDEX3(planes_ptr,i,0)*x[INDEX3(nodes,i,2)] -
INDEX3(planes_ptr,i,1)*y[INDEX3(nodes,i,2)]);
} else {
xy0212 = x02/x12;
INDEX3(planes_ptr,i,1) = (z02 - z12 * xy0212) / (y02 - y12 * xy0212);
INDEX3(planes_ptr,i,0) = (z12 - INDEX3(planes_ptr,i,1)*y12) / x12;
INDEX3(planes_ptr,i,2) = (z[INDEX3(nodes,i,2)] -
INDEX3(planes_ptr,i,0)*x[INDEX3(nodes,i,2)] -
INDEX3(planes_ptr,i,1)*y[INDEX3(nodes,i,2)]);
}
}
return (PyObject*)planes;
}
static double linear_interpolate_single(double targetx, double targety,
double *x, double *y, int *nodes, int *neighbors,
PyObject *planes, double defvalue, int start_triangle, int *end_triangle)
{
double *planes_ptr;
planes_ptr = (double*)PyArray_DATA(planes);
if (start_triangle == -1) start_triangle = 0;
*end_triangle = walking_triangles(start_triangle, targetx, targety,
x, y, nodes, neighbors);
if (*end_triangle == -1) return defvalue;
return (targetx*INDEX3(planes_ptr,*end_triangle,0) +
targety*INDEX3(planes_ptr,*end_triangle,1) +
INDEX3(planes_ptr,*end_triangle,2));
}
static PyObject *linear_interpolate_grid(double x0, double x1, int xsteps,
double y0, double y1, int ysteps,
PyObject *planes, double defvalue,
int npoints, double *x, double *y, int *nodes, int *neighbors)
{
int ix, iy;
double dx, dy, targetx, targety;
int rowtri, coltri, tri;
PyObject *z;
double *z_ptr;
intp dims[2];
dims[0] = ysteps;
dims[1] = xsteps;
z = PyArray_SimpleNew(2, dims, PyArray_DOUBLE);
if (!z) return NULL;
z_ptr = (double*)PyArray_DATA(z);
dx = (x1 - x0) / (xsteps-1);
dy = (y1 - y0) / (ysteps-1);
rowtri = 0;
for (iy=0; iy<ysteps; iy++) {
targety = y0 + dy*iy;
rowtri = walking_triangles(rowtri, x0, targety, x, y, nodes, neighbors);
tri = rowtri;
for (ix=0; ix<xsteps; ix++) {
targetx = x0 + dx*ix;
INDEXN(z_ptr, xsteps, iy, ix) = linear_interpolate_single(
targetx, targety,
x, y, nodes, neighbors, planes, defvalue, tri, &coltri);
if (coltri != -1) tri = coltri;
}
}
return z;
}
static PyObject *compute_planes_method(PyObject *self, PyObject *args)
{
PyObject *pyx, *pyy, *pyz, *pynodes;
PyArrayObject *x, *y, *z, *nodes;
int npoints, ntriangles;
PyObject *planes;
if (!PyArg_ParseTuple(args, "OOOO", &pyx, &pyy, &pyz, &pynodes)) {
return NULL;
}
x = (PyArrayObject*)PyArray_ContiguousFromObject(pyx, PyArray_DOUBLE, 1, 1);
y = (PyArrayObject*)PyArray_ContiguousFromObject(pyy, PyArray_DOUBLE, 1, 1);
z = (PyArrayObject*)PyArray_ContiguousFromObject(pyz, PyArray_DOUBLE, 1, 1);
if ((!x || !y) || !z) {
PyErr_SetString(PyExc_ValueError, "x,y,z must be 1-D arrays of floats");
goto fail;
}
npoints = PyArray_DIM(x, 0);
if ((PyArray_DIM(y, 0) != npoints) || (PyArray_DIM(z, 0) != npoints)) {
PyErr_SetString(PyExc_ValueError, "x,y,z arrays must be of equal length");
goto fail;
}
nodes = (PyArrayObject*)PyArray_ContiguousFromObject(pynodes, PyArray_INT, 2, 2);
if (!nodes) {
PyErr_SetString(PyExc_ValueError, "nodes must be a 2-D array of ints");
goto fail;
}
ntriangles = PyArray_DIM(nodes, 0);
if (PyArray_DIM(nodes, 1) != 3) {
PyErr_SetString(PyExc_ValueError, "nodes must have shape (ntriangles, 3)");
goto fail;
}
planes = linear_planes(ntriangles, (double*)PyArray_DATA(x),
(double*)PyArray_DATA(y), (double*)PyArray_DATA(z), (int*)PyArray_DATA(nodes));
Py_DECREF(pyx);
Py_DECREF(pyy);
Py_DECREF(pyz);
Py_DECREF(pynodes);
return planes;
fail:
Py_XDECREF(pyx);
Py_XDECREF(pyy);
Py_XDECREF(pyz);
Py_XDECREF(pynodes);
return NULL;
}
static PyObject *linear_interpolate_method(PyObject *self, PyObject *args)
{
double x0, x1, y0, y1, defvalue;
int xsteps, ysteps;
PyObject *pyplanes, *pyx, *pyy, *pynodes, *pyneighbors, *grid;
int npoints;
PyArrayObject *planes, *x, *y, *nodes, *neighbors;
if (!PyArg_ParseTuple(args, "ddiddidOOOOO", &x0, &x1, &xsteps, &y0, &y1, &ysteps,
&defvalue, &pyplanes, &pyx, &pyy, &pynodes, &pyneighbors)) {
return NULL;
}
x = (PyArrayObject*)PyArray_ContiguousFromObject(pyx, PyArray_DOUBLE, 1, 1);
y = (PyArrayObject*)PyArray_ContiguousFromObject(pyy, PyArray_DOUBLE, 1, 1);
if (!x || !y) {
PyErr_SetString(PyExc_ValueError, "x,y must be 1-D arrays of floats");
goto fail;
}
npoints = PyArray_DIM(x, 0);
if (PyArray_DIM(y, 0) != npoints) {
PyErr_SetString(PyExc_ValueError, "x,y arrays must be of equal length");
goto fail;
}
planes = (PyArrayObject*)PyArray_ContiguousFromObject(pyplanes, PyArray_DOUBLE, 2, 2);
if (!planes) {
PyErr_SetString(PyExc_ValueError, "planes must be a 2-D array of floats");
goto fail;
}
nodes = (PyArrayObject*)PyArray_ContiguousFromObject(pynodes, PyArray_INT, 2, 2);
if (!nodes) {
PyErr_SetString(PyExc_ValueError, "nodes must be a 2-D array of ints");
goto fail;
}
neighbors = (PyArrayObject*)PyArray_ContiguousFromObject(pyneighbors, PyArray_INT, 2, 2);
if (!neighbors) {
PyErr_SetString(PyExc_ValueError, "neighbors must be a 2-D array of ints");
goto fail;
}
grid = linear_interpolate_grid(x0, x1, xsteps, y0, y1, ysteps,
(PyObject*)planes, defvalue, npoints,
(double*)PyArray_DATA(x), (double*)PyArray_DATA(y),
(int*)PyArray_DATA(nodes), (int*)PyArray_DATA(neighbors));
Py_DECREF(x);
Py_DECREF(y);
Py_DECREF(planes);
Py_DECREF(nodes);
Py_DECREF(neighbors);
return grid;
fail:
Py_XDECREF(x);
Py_XDECREF(y);
Py_XDECREF(planes);
Py_XDECREF(nodes);
Py_XDECREF(neighbors);
return NULL;
}
#define CLEANUP \
Py_XDECREF(x);\
Py_XDECREF(y);\
Py_XDECREF(z);\
Py_XDECREF(intx);\
Py_XDECREF(inty);\
Py_XDECREF(centers);\
Py_XDECREF(nodes);\
Py_XDECREF(neighbors);\
Py_XDECREF(intz);\
return NULL;
static PyObject *nn_interpolate_unstructured_method(PyObject *self, PyObject *args)
{
PyObject *pyx, *pyy, *pyz, *pycenters, *pynodes, *pyneighbors, *pyintx, *pyinty;
PyArrayObject *x, *y, *z, *centers, *nodes, *neighbors, *intx, *inty, *intz;
double defvalue;
int size, npoints, ntriangles;
if (!PyArg_ParseTuple(args, "OOdOOOOOO", &pyintx, &pyinty, &defvalue,
&pyx, &pyy, &pyz, &pycenters, &pynodes, &pyneighbors)) {
return NULL;
}
x = (PyArrayObject*)PyArray_ContiguousFromObject(pyx, PyArray_DOUBLE, 1, 1);
y = (PyArrayObject*)PyArray_ContiguousFromObject(pyy, PyArray_DOUBLE, 1, 1);
z = (PyArrayObject*)PyArray_ContiguousFromObject(pyz, PyArray_DOUBLE, 1, 1);
if ((!x || !y) || !z) {
PyErr_SetString(PyExc_ValueError, "x,y must be 1-D arrays of floats");
//goto fail;
CLEANUP
}
npoints = PyArray_DIM(x, 0);
if ((PyArray_DIM(y, 0) != npoints) || (PyArray_DIM(z, 0) != npoints)) {
PyErr_SetString(PyExc_ValueError, "x,y,z arrays must be of equal length");
//goto fail;
CLEANUP
}
centers = (PyArrayObject*)PyArray_ContiguousFromObject(pycenters, PyArray_DOUBLE, 2, 2);
if (!centers) {
PyErr_SetString(PyExc_ValueError, "centers must be a 2-D array of ints");
//goto fail;
CLEANUP
}
nodes = (PyArrayObject*)PyArray_ContiguousFromObject(pynodes, PyArray_INT, 2, 2);
if (!nodes) {
PyErr_SetString(PyExc_ValueError, "nodes must be a 2-D array of ints");
//goto fail;
CLEANUP
}
neighbors = (PyArrayObject*)PyArray_ContiguousFromObject(pyneighbors, PyArray_INT, 2, 2);
if (!neighbors) {
PyErr_SetString(PyExc_ValueError, "neighbors must be a 2-D array of ints");
//goto fail;
CLEANUP
}
ntriangles = PyArray_DIM(neighbors, 0);
if ((PyArray_DIM(nodes, 0) != ntriangles) ||
(PyArray_DIM(centers, 0) != ntriangles)) {
PyErr_SetString(PyExc_ValueError, "centers,nodes,neighbors must be of equal length");
//goto fail;
CLEANUP
}
intx = (PyArrayObject*)PyArray_ContiguousFromObject(pyintx, PyArray_DOUBLE, 0, 0);
inty = (PyArrayObject*)PyArray_ContiguousFromObject(pyinty, PyArray_DOUBLE, 0, 0);
if (!intx || !inty) {
PyErr_SetString(PyExc_ValueError, "intx,inty must be arrays of floats");
CLEANUP
}
if (intx->nd != inty->nd) {
PyErr_SetString(PyExc_ValueError, "intx,inty must have same shapes");
CLEANUP
}
for (int i=0; i<intx->nd; i++) {
if (intx->dimensions[i] != inty->dimensions[i]) {
PyErr_SetString(PyExc_ValueError, "intx,inty must have same shapes");
CLEANUP
}
}
intz = (PyArrayObject*)PyArray_SimpleNew(intx->nd, intx->dimensions, PyArray_DOUBLE);
if (!intz) {CLEANUP}
NaturalNeighbors nn(npoints, ntriangles,
(double*)PyArray_DATA(x), (double*)PyArray_DATA(y),
(double*)PyArray_DATA(centers), (int*)PyArray_DATA(nodes),
(int*)PyArray_DATA(neighbors));
size = PyArray_Size((PyObject*)intx);
nn.interpolate_unstructured((double*)PyArray_DATA(z), size,
(double*)PyArray_DATA(intx), (double*)PyArray_DATA(inty),
(double*)PyArray_DATA(intz), defvalue);
return (PyObject*)intz;
}
#undef CLEANUP
#define CLEANUP \
Py_XDECREF(x);\
Py_XDECREF(y);\
Py_XDECREF(z);\
Py_XDECREF(centers);\
Py_XDECREF(nodes);\
Py_XDECREF(neighbors);\
return NULL;
static PyObject *nn_interpolate_method(PyObject *self, PyObject *args)
{
PyObject *pyx, *pyy, *pyz, *pycenters, *pynodes, *pyneighbors, *grid;
PyArrayObject *x, *y, *z, *centers, *nodes, *neighbors;
double x0, x1, y0, y1, defvalue;
int xsteps, ysteps;
int npoints, ntriangles;
intp dims[2];
if (!PyArg_ParseTuple(args, "ddiddidOOOOOO", &x0, &x1, &xsteps,
&y0, &y1, &ysteps, &defvalue, &pyx, &pyy, &pyz, &pycenters, &pynodes,
&pyneighbors)) {
return NULL;
}
x = (PyArrayObject*)PyArray_ContiguousFromObject(pyx, PyArray_DOUBLE, 1, 1);
y = (PyArrayObject*)PyArray_ContiguousFromObject(pyy, PyArray_DOUBLE, 1, 1);
z = (PyArrayObject*)PyArray_ContiguousFromObject(pyz, PyArray_DOUBLE, 1, 1);
if ((!x || !y) || !z) {
PyErr_SetString(PyExc_ValueError, "x,y must be 1-D arrays of floats");
//goto fail;
CLEANUP
}
npoints = PyArray_DIM(x, 0);
if (PyArray_DIM(y, 0) != npoints) {
PyErr_SetString(PyExc_ValueError, "x,y arrays must be of equal length");
//goto fail;
CLEANUP
}
centers = (PyArrayObject*)PyArray_ContiguousFromObject(pycenters, PyArray_DOUBLE, 2, 2);
if (!centers) {
PyErr_SetString(PyExc_ValueError, "centers must be a 2-D array of ints");
//goto fail;
CLEANUP
}
nodes = (PyArrayObject*)PyArray_ContiguousFromObject(pynodes, PyArray_INT, 2, 2);
if (!nodes) {
PyErr_SetString(PyExc_ValueError, "nodes must be a 2-D array of ints");
//goto fail;
CLEANUP
}
neighbors = (PyArrayObject*)PyArray_ContiguousFromObject(pyneighbors, PyArray_INT, 2, 2);
if (!neighbors) {
PyErr_SetString(PyExc_ValueError, "neighbors must be a 2-D array of ints");
//goto fail;
CLEANUP
}
ntriangles = PyArray_DIM(neighbors, 0);
if ((PyArray_DIM(nodes, 0) != ntriangles) ||
(PyArray_DIM(centers, 0) != ntriangles)) {
PyErr_SetString(PyExc_ValueError, "centers,nodes,neighbors must be of equal length");
//goto fail;
CLEANUP
}
//goto succeed; // XXX: Can't cross NaturalNeighbors instantiation with goto
dims[0] = ysteps;
dims[1] = xsteps;
grid = PyArray_SimpleNew(2, dims, PyArray_DOUBLE);
if (!grid) {CLEANUP} // goto fail;
NaturalNeighbors nn(npoints, ntriangles,
(double*)PyArray_DATA(x), (double*)PyArray_DATA(y),
(double*)PyArray_DATA(centers), (int*)PyArray_DATA(nodes),
(int*)PyArray_DATA(neighbors));
nn.interpolate_grid((double*)PyArray_DATA(z),
x0, x1, xsteps,
y0, y1, ysteps,
(double*)PyArray_DATA(grid),
defvalue, 0);
Py_DECREF(x);
Py_DECREF(y);
Py_DECREF(z);
Py_DECREF(centers);
Py_DECREF(nodes);
Py_DECREF(neighbors);
return grid;
}
#undef CLEANUP
static PyObject *delaunay_method(PyObject *self, PyObject *args)
{
PyObject *pyx, *pyy, *mesh;
PyArrayObject *x, *y;
int npoints;
if (!PyArg_ParseTuple(args, "OO", &pyx, &pyy)) {
return NULL;
}
x = (PyArrayObject*)PyArray_ContiguousFromObject(pyx, PyArray_DOUBLE, 1, 1);
y = (PyArrayObject*)PyArray_ContiguousFromObject(pyy, PyArray_DOUBLE, 1, 1);
if (!x || !y) {
PyErr_SetString(PyExc_ValueError, "x,y must be 1-D arrays of floats");
goto fail;
}
npoints = PyArray_DIM(x, 0);
if (PyArray_DIM(y, 0) != npoints) {
PyErr_SetString(PyExc_ValueError, "x and y must have the same length");
goto fail;
}
mesh = getMesh(npoints, (double*)(x->data), (double*)(y->data));
if (!mesh) goto fail;
Py_DECREF(x);
Py_DECREF(y);
return mesh;
fail:
Py_XDECREF(x);
Py_XDECREF(y);
return NULL;
}
static PyMethodDef delaunay_methods[] = {
{"delaunay", (PyCFunction)delaunay_method, METH_VARARGS,
"Compute the Delaunay triangulation of a cloud of 2-D points.\n\n"
"circumcenters, edges, tri_points, tri_neighbors = delaunay(x, y)\n\n"
"x, y -- shape-(npoints,) arrays of floats giving the X and Y coordinates of the points\n"
"circumcenters -- shape-(numtri,2) array of floats giving the coordinates of the\n"
" circumcenters of each triangle (numtri being the number of triangles)\n"
"edges -- shape-(nedges,2) array of integers giving the indices into x and y\n"
" of each edge in the triangulation\n"
"tri_points -- shape-(numtri,3) array of integers giving the indices into x and y\n"
" of each node in each triangle\n"
"tri_neighbors -- shape-(numtri,3) array of integers giving the indices into circumcenters\n"
" tri_points, and tri_neighbors of the neighbors of each triangle\n"},
{"compute_planes", (PyCFunction)compute_planes_method, METH_VARARGS,
""},
{"linear_interpolate_grid", (PyCFunction)linear_interpolate_method, METH_VARARGS,
""},
{"nn_interpolate_grid", (PyCFunction)nn_interpolate_method, METH_VARARGS,
""},
{"nn_interpolate_unstructured", (PyCFunction)nn_interpolate_unstructured_method, METH_VARARGS,
""},
{NULL, NULL, 0, NULL}
};
PyMODINIT_FUNC init_delaunay(void)
{
PyObject* m;
m = Py_InitModule3("_delaunay", delaunay_methods,
"Tools for computing the Delaunay triangulation and some operations on it.\n"
);
if (m == NULL)
return;
import_array();
}
} // extern "C"
|