File: natneighbors.cpp

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (299 lines) | stat: -rw-r--r-- 9,819 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

#include "delaunay_utils.h"
#include "natneighbors.h"

#include <stack>
#include <list>
#include <vector>
#include <set>
#include <math.h>
#include <iostream>
#include <iterator>

using namespace std;

NaturalNeighbors::NaturalNeighbors(int npoints, int ntriangles, double *x, double *y,
    double *centers, int *nodes, int *neighbors)
{
    this->npoints = npoints;
    this->ntriangles = ntriangles;
    this->x = x;
    this->y = y;
    this->centers = centers;
    this->nodes = nodes;
    this->neighbors = neighbors;

    this->radii2 = new double[ntriangles];
    for (int i=0; i<ntriangles; i++) {
        double x2 = x[INDEX3(nodes,i,0)] - INDEX2(centers,i,0);
        x2 = x2*x2;
        double y2 = y[INDEX3(nodes,i,0)] - INDEX2(centers,i,1);
        y2 = y2*y2;
        this->radii2[i] = x2 + y2;
    }

}

NaturalNeighbors::~NaturalNeighbors()
{
    delete[] this->radii2;
}

int NaturalNeighbors::find_containing_triangle(double targetx, double targety, int start_triangle)
{
    int final_triangle;
    final_triangle = walking_triangles(start_triangle, targetx, targety, 
        x, y, nodes, neighbors);
    return final_triangle;
}

double NaturalNeighbors::interpolate_one(double *z, double targetx, double targety,
    double defvalue, int &start_triangle)
{
    int t = find_containing_triangle(targetx, targety, start_triangle);
    if (t == -1) return defvalue;

    start_triangle = t;
    vector<int> circumtri;

    circumtri.push_back(t);
    stack<int> stackA;
    stack<int> stackB;
    int tnew, i;

    for (i=0; i<3; i++) {
        tnew = INDEX3(this->neighbors, t, i);
        if (tnew != -1) {
            stackA.push(tnew);
            stackB.push(t);
        }
    }
    while (!stackA.empty()) {
        tnew = stackA.top();
        stackA.pop();
        t = stackB.top();
        stackB.pop();
        double d2 = (SQ(targetx - INDEX2(this->centers,tnew,0))
                   + SQ(targety - INDEX2(this->centers,tnew,1)));
        if ((this->radii2[tnew]-d2) > TOLERANCE_EPS) {
            // tnew is a circumtriangle of the target
            circumtri.push_back(tnew);
            for (i=0; i<3; i++) {
                int ti = INDEX3(this->neighbors, tnew, i);
                if ((ti != -1) && (ti != t)) {
                    stackA.push(ti);
                    stackB.push(tnew);
                }
            }
        }
    }

    vector<int>::iterator it;
    double f = 0.0;
    double A = 0.0;
    double tA=0.0, yA=0.0, cA=0.0; // Kahan summation temps for A
    double tf=0.0, yf=0.0, cf=0.0; // Kahan summation temps for f

    vector<int> edge;
    bool onedge = false;
    bool onhull = false;

    for (it = circumtri.begin(); it != circumtri.end(); it++) {
        int t = *it;
        double vx = INDEX2(this->centers, t, 0);
        double vy = INDEX2(this->centers, t, 1);
        vector<double> c(6);
        for (int i=0; i<3; i++) {
            int j = EDGE0(i);
            int k = EDGE1(i);

            if (!circumcenter(
                    this->x[INDEX3(this->nodes, t, j)],
                    this->y[INDEX3(this->nodes, t, j)],
                    this->x[INDEX3(this->nodes, t, k)],
                    this->y[INDEX3(this->nodes, t, k)],
                    targetx, targety,
                    INDEX2(c, i, 0), INDEX2(c, i, 1))) {

                // bail out with the appropriate values if we're actually on a 
                // node
                if ((fabs(targetx - this->x[INDEX3(this->nodes, t, j)]) < TOLERANCE_EPS)
                 && (fabs(targety - this->y[INDEX3(this->nodes, t, j)]) < TOLERANCE_EPS)) {
                    return z[INDEX3(this->nodes, t, j)];
                } else if ((fabs(targetx - this->x[INDEX3(this->nodes, t, k)]) < TOLERANCE_EPS)
                        && (fabs(targety - this->y[INDEX3(this->nodes, t, k)]) < TOLERANCE_EPS)) {
                    return z[INDEX3(this->nodes, t, k)];
                } else if (!onedge) {
                    onedge = true;
                    edge.push_back(INDEX3(this->nodes, t, j));
                    edge.push_back(INDEX3(this->nodes, t, k));
                    onhull = (INDEX3(neighbors, t, i) == -1);
                }
            }
        }
        for (int i=0; i<3; i++) {
            int j = EDGE0(i);
            int k = EDGE1(i);
            int q = INDEX3(this->nodes, t, i);
            double ati = 0.0;

            if (!onedge || ((edge[0] != q) && edge[1] != q)) {
                ati = signed_area(vx, vy, 
                                  INDEX2(c, j, 0), INDEX2(c, j, 1),
                                  INDEX2(c, k, 0), INDEX2(c, k, 1));


                yA = ati - cA;
                tA = A + yA;
                cA = (tA - A) - yA;
                A = tA;

                yf = ati*z[q] - cf;
                tf = f + yf;
                cf = (tf - f) - yf;
                f = tf;
            }
        }
    }

    // If we're on an edge, then the scheme of adding up triangles as above
    // doesn't work so well. We'll take care of these two nodes here.
    if (onedge) {

        // If we're on the convex hull, then the other nodes don't actually 
        // contribute anything, just the nodes for the edge we're on. The 
        // Voronoi "polygons" are infinite in extent.
        if (onhull) {
            double a = (hypot(targetx-x[edge[0]], targety-y[edge[0]]) / 
                        hypot(x[edge[1]]-x[edge[0]], y[edge[1]]-y[edge[0]]));
            return (1-a) * z[edge[0]] + a*z[edge[1]];
        }

        set<int> T(circumtri.begin(), circumtri.end());
        vector<int> newedges0; // the two nodes that edge[0] still connect to
        vector<int> newedges1; // the two nodes that edge[1] still connect to
        set<int> alltri0; // all of the circumtriangle edge[0] participates in
        set<int> alltri1; // all of the circumtriangle edge[1] participates in
        for (it = circumtri.begin(); it != circumtri.end(); it++) {
            for (int i=0; i<3; i++) {
                int ti = INDEX3(this->neighbors, *it, i);
                int j = EDGE0(i);
                int k = EDGE1(i);
                int q0 = INDEX3(this->nodes, *it, j);
                int q1 = INDEX3(this->nodes, *it, k);

                if ((q0 == edge[0]) || (q1 == edge[0])) alltri0.insert(*it);
                if ((q0 == edge[1]) || (q1 == edge[1])) alltri1.insert(*it);

                if (!T.count(ti)) {
                    // neighbor is not in the set of circumtriangles
                    if (q0 == edge[0]) newedges0.push_back(q1);
                    if (q1 == edge[0]) newedges0.push_back(q0);
                    if (q0 == edge[1]) newedges1.push_back(q1);
                    if (q1 == edge[1]) newedges1.push_back(q0);
                }
            }
        }

        set<int>::iterator sit;

        double cx, cy;
        ConvexPolygon poly0;
        ConvexPolygon poly1;

        if (edge[1] != newedges0[0]) {
            circumcenter(this->x[edge[0]], this->y[edge[0]],
                         this->x[newedges0[0]], this->y[newedges0[0]],
                         targetx, targety,
                         cx, cy);
            poly0.push(cx, cy);
        }
        if (edge[1] != newedges0[1]) {
            circumcenter(this->x[edge[0]], this->y[edge[0]],
                         this->x[newedges0[1]], this->y[newedges0[1]],
                         targetx, targety,
                         cx, cy);
            poly0.push(cx, cy);
        }

        if (edge[0] != newedges1[0]) {
            circumcenter(this->x[edge[1]], this->y[edge[1]],
                         this->x[newedges1[0]], this->y[newedges1[0]],
                         targetx, targety,
                         cx, cy);
            poly1.push(cx, cy);
        }
        if (edge[0] != newedges1[1]) {
            circumcenter(this->x[edge[1]], this->y[edge[1]],
                         this->x[newedges1[1]], this->y[newedges1[1]],
                         targetx, targety,
                         cx, cy);
            poly1.push(cx, cy);
        }

        for (sit = alltri0.begin(); sit != alltri0.end(); sit++) {
            poly0.push(INDEX2(this->centers, *sit, 0),
                       INDEX2(this->centers, *sit, 1)); 
        }
        for (sit = alltri1.begin(); sit != alltri1.end(); sit++) {
            poly1.push(INDEX2(this->centers, *sit, 0),
                       INDEX2(this->centers, *sit, 1)); 
        }

        double a0 = poly0.area();
        double a1 = poly1.area();


        f += a0*z[edge[0]];
        A += a0;
        f += a1*z[edge[1]];
        A += a1;

        // Anticlimactic, isn't it?
    }

    f /= A;
    return f;
}

void NaturalNeighbors::interpolate_grid(double *z, 
    double x0, double x1, int xsteps,
    double y0, double y1, int ysteps,
    double *output,
    double defvalue, int start_triangle)
{
    int i, ix, iy, rowtri, coltri, tri;
    double dx, dy, targetx, targety;

    dx = (x1 - x0) / (xsteps-1);
    dy = (y1 - y0) / (ysteps-1);

    rowtri = 0;
    i = 0;
    for (iy=0; iy<ysteps; iy++) {
        targety = y0 + dy*iy;
        rowtri = find_containing_triangle(x0, targety, rowtri);
        tri = rowtri;
        for (ix=0; ix<xsteps; ix++) {
            targetx = x0 + dx*ix;
            coltri = tri;
            INDEXN(output, xsteps, iy, ix) = interpolate_one(z, targetx, targety,
                defvalue, coltri);
            if (coltri != -1) tri = coltri;
        }
    }
}

void NaturalNeighbors::interpolate_unstructured(double *z, int size, 
    double *intx, double *inty, double *output, double defvalue)
{
    int i, tri1, tri2;

    tri1 = 0;
    tri2 = 0;
    for (i=0; i<size; i++) {
        tri2 = tri1;
        output[i] = interpolate_one(z, intx[i], inty[i], defvalue, tri2);
        if (tri2 != -1) tri1 = tri2;
    }
}