File: algorithm.orig

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (425 lines) | stat: -rw-r--r-- 17,933 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
from ga_util import *
import scipy.stats as stats
rv = stats
#import scipy.io.dumb_shelve
import string
import os, sys
import time, pprint, types,copy
import dumbdbm
#import thread, sync
if sys.platform != 'win32':
    import fcntl
    timer = time.clock      #clock behaves differently work on linux
else:
    timer = time.time

dberror = dumbdbm.error

def max_score(pop): return max(map(lambda x: x.score(),pop))

class galg:
    """A basic genetic algorithm.  The genetic algorithm is responsible
       for evolving a population of genomes.  While the population and
       the genomes are in charge of defining most of the genetic operators
       such as selection, scaling, mutation, and crossover, it is the
       genetic algorithm class that orchestrates the evolution and calls
       the operators in the correct order.  Most of the work is done
       in the **step()** method.
    """
    valid_settings = ['pop_size','p_replace',
                            'p_cross', 'p_mutate','p_deviation',
                            'gens','rand_seed','rand_alg','dbase','update_rate']
    output_settings = ['crossover','selector', 'scaler','genome_type']
    default_settings = {'pop_size':150,'p_replace':.8,
                            'p_cross': .8, 'p_mutate':'gene',
                            'p_deviation': 0.,'gens':35,
                            'rand_seed':0,'rand_alg':'CMRG',
                            'update_rate': 10000,'dbase':''}
    default_verbose = 1

    def __init__(self,pop):
        self.verbose = self.default_verbose
        self.settings = copy.copy(galg.default_settings)
        self.pop = pop
    def test_settings(self,settings):
        for key in settings.keys():
            try:
                self.output_settings.index(key)
                print 'Warning: The key "%s" in settings is readonly.' % key
            except ValueError:
                try: self.valid_settings.index(key)
                except ValueError:
                    print 'Warning: The key "%s" in not a valid setting.' % key
                    print 'The valid settings are %s' % self.valid_settings

    def initialize(self,reseed = 1):
        b = timer()
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']; alg = self.settings['rand_alg']
        if reseed: rv.initialize(seed = sd, algorithm = alg)
        self.settings['seed_used'] = rv.initial_seed()
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop.model_genome.crossover # get the crossover op from the first genome
        self.pop.settings = self.settings #should these be shared?
        self.size_pop(self.settings['pop_size'])

        self.settings['crossover'] = string.split(str(self.crossover))[0][1:]
        self.settings['selector'] = string.split(str(self.pop.selector))[0][1:]
        self.settings['scaler'] = string.split(str(self.pop.scaler))[0][1:]
        self.settings['genome_type'] = string.split(str(self.pop.model_genome))[0][1:]
#               self._print(self.settings)

        self.pop.initialize(self.settings);
        self.stats = {'selections':0,'crossovers':0,'mutations':0,
                          'replacements':0,'pop_evals':1,'ind_evals':0}
        self.stats.update(self.pop.stats)
        self.step_time = timer() - b
        self.init_dbase()
    def size_pop(self,s):
        self.settings['pop_size'] = s
        self.pop._size(s)

    def step(self,steps=1):
        sz = len(self.pop)
        replace = int(self.settings['p_replace'] * len(self.pop))
        p_crossover = self.settings['p_cross']
        for st in range(steps):
            b = timer()
            for i in range(0,replace,2):
                mom,dad= self.pop.select(2)
                self.stats['selections'] = self.stats['selections'] + 2
                if flip_coin(p_crossover):
                    try:
                        bro,sis = self.crossover((mom,dad))
                        self.stats['crossovers'] = self.stats['crossovers'] + 2
                        self.pop.append(bro); self.pop.append(sis)
                    except ValueError:
                        #crossover failed - just act as if this iteration never happened
                        i = i - 2
                        #print 'crossover failure - ignoring and continuing'
                else:
                    self.pop.append(mom.clone());self.pop.append(dad.clone());
            if replace % 2: #we did one to many - remove the last individual
                del self.pop[-1]
                self.stats['crossovers'] = self.stats['crossovers'] - 1
            e1 = timer();
            self.stats['mutations'] = self.stats['mutations'] + self.pop[sz:].mutate()
#                       for ind in self.pop[sz:]:
#                               m = ind.mutate()
#                               self.stats['mutations'] = self.stats['mutations'] + m
            e2 = timer();
            self.pop.touch()
            self.pop.evaluate()
            e3 = timer();
            del self.pop[sz:] #touch removed from del
            self.pop.scale()
            self.pop.update_stats()
            self.stats['pop_evals'] = self.stats['pop_evals'] + 1
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            #print 'cross:',e1-b,'mutate:',e2-e1,'eval:',e3-e2,'rest:',e-e3
        self.stats.update(self.pop.stats)
        self.db_entry['best_scores'].append(self.stats['current']['max'])

    def evolve(self):
        b = timer()
        self.initialize()
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step()
            self.p_dev = self.pop_deviation()
            self.iteration_output()
            if(self.gen % self.settings['update_rate'] == 0):
                self.update_dbase()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()
    def iteration_output(self):
        output = ( 'gen: ' + `self.gen` + ' '
                 + 'max: ' + `self.stats['current']['max']`  + ' '
                 + 'dev: ' + `self.p_dev` + ' '
                + 'eval time: ' + `self.step_time` + ' ')
        self._print( output )

    def pre_evolve(self):   pass
    def post_evolve(self):  pass
    def pop_deviation(self):
        #calculate the std deviation across all populations as a percent of mean
        scores = self.pop.scores()
        denom = my_mean(scores)
        if denom == 0.: denom = .0001  # what should I do here?
        return abs(my_std(scores)/denom)
    #dbase stuff
    def init_dbase(self):
        self.db_entry = {}
        self.db_entry['settings'] = self.settings
        t=time.time()
        self.db_entry['raw_time'] = t
        self.db_entry['time'] = time.ctime(t)
        self.db_entry['best_scores'] = [self.stats['current']['max']]
        self.db_entry['stats'] = [copy.deepcopy(self.stats)]
        self.db_entry['step_time'] = [self.step_time]
        self.db_entry['optimization_type'] = string.split(str(self.__class__))[0][1:]

    def update_dbase(self):
#               self.db_entry['best_scores'].append(self.pop.best().score())
        self.db_entry['stats'].append(copy.deepcopy(self.stats))
        self.db_entry['step_time'].append(self.step_time)

    def write_dbase(self):
        """This does not do file locking on NT - which isn't that big
           a deal because at the most, two runs are going at a time, and
           they are unlikely going to write at the same time (but could).
           On NT, hopefully we're using the gdbm module which does automatic
           file locking.
        """
        if(self.settings['dbase'] != ''):
            fname= self.settings['dbase']
            try:
                if sys.platform == 'win32': pass
                else:
                    f = open(fname +'.lock','a')
                    fcntl.flock(f.fileno(),fcntl.LOCK_EX)
                try:
                    try: db = my_shelve.open(fname,'w')
                    except dberror: db = my_shelve.open(fname,'c')
                    keys = db.keys()
                    if(len(keys) == 0): self.dbkey = `1`
                    else:
                        gkeys=[]
                        for k in keys:
                            try: gkeys.append(string.atoi(k))
                            except ValueError: pass
                        self.dbkey = `max(gkeys)+1`
                    print 'DB NAME: ', self.settings['dbase'], 'KEY: ', self.dbkey
                    db[self.dbkey] = self.db_entry
                    db.close()
                except: pass #if an error occured, we still need to unlock the db
                if sys.platform == 'win32': pass
                else:
                    fcntl.flock(f.fileno(),fcntl.LOCK_UN)
                    f.close()
            except:
                if sys.platform == 'win32': pass
                else:
                    f = open('error.lock','a')
                    f.write(os.environ['HOST'])
                    f.close()

        else:   "no dbase specified"

    def _print(self,val, level = 1):
        if(self.verbose >= level):
            if type(val) == types.StringType: print val
            else:
                pp = pprint.PrettyPrinter(indent=4)
                pp.pprint(val)


    ALL = -1
class m_galg(galg):
    valid_settings = galg.valid_settings + ['num_pops', 'migrants']
    default_settings = galg.default_settings
    default_settings['pop_size'] = 30; default_settings['num_pops'] = 4
    default_settings['migrants'] = 2

    verbose = 1
    def __init__(self,pop):
        galg.__init__(self,pop)
#               self.GAs = self.GAs + [galg(pop.clone())]
        self.settings = copy.copy(self.default_settings)

    def initialize(self, mode = 'serial'):
        b = timer()
        #same as galg
        self.test_settings(self.settings)
        self.gen = 0
        sd = self.settings['rand_seed']; alg = self.settings['rand_alg']
        rv.initialize(seed = sd, algorithm = alg)
        self.settings['seed_used'] = rv.initial_seed()
        self._print('initializing... seed = %d' % self.settings['seed_used'])
        self.crossover = self.pop[0].crossover # get the crossover op from the first genome
        self.pop.settings = self.settings
        #end same as galg

        #set up my population to hold the best from each sub-pop
        self.pop._size(0) #erase any current member of the pop
        self.pop._size(self.settings['num_pops'])
        self.crossover = self.pop[0].crossover

        #extract the galg settings so we don't get a ton of warnings
        #and create the sub ga_s
        sub_ga_settings = {}
        self.GAs = []
        for key in galg.valid_settings:
            sub_ga_settings[key] = self.settings[key]
        for i in range(self.settings['num_pops']):
            self.GAs.append(galg(self.pop.clone()))
            self.GAs[i].settings = sub_ga_settings.copy()

        self.settings['crossover'] = string.split(str(self.crossover))[0][1:]
        self.settings['selector'] = string.split(str(self.pop.selector))[0][1:]
        self.settings['scaler'] = string.split(str(self.pop.scaler))[0][1:]
        self.settings['genome_type'] = string.split(str(self.pop.model_genome))[0][1:]
        self._print(self.settings)

        if mode[0] == 'p' or mode[0] == 'P':
            """
                sys.setcheckinterval(1000)
                finished = sync.event()
                bar = sync.barrier(len(self.GAs))
                for ga in self.GAs:
                        thread.start_new_thread(GA_initializer,(bar,finished,ga))
                finished.wait()
                sys.setcheckinterval(10)
                """
        else:
            for ga in self.GAs: ga.initialize(reseed = 0)
        cnt = 0
        for ga in self.GAs:
            self.pop[cnt] = ga.pop.best()
            cnt = cnt + 1
        self.pop.sort()
        self.init_stats()
        self.step_time = timer() - b
        self.init_dbase()

    def init_stats(self):
        #first set up the pops stats, since we don't officially initialize it.
        self.pop.stats = {'current':{},'initial':{},'overall':{}}
        self.pop.stats['selections'] =0; self.pop.stats['crossovers'] =0
        self.pop.stats['mutations'] = 0; self.pop.stats['replacements'] = 0
        self.pop.stats['ind_evals'] = 0
        self.stats = self.pop.stats.copy()
        self.update_stats()
    def update_stats(self):
        """Gather statistics from the various populations to the mga's population.
        """
        sum_fields = ['selections','crossovers','mutations','replacements','ind_evals']
        s = []
        for ga in self.GAs:
            for field in sum_fields:
                self.pop.stats[field] = self.pop.stats[field] + ga.stats[field]
            s = s + ga.pop.scores().tolist()

        self.pop.stats['current']['max'] = self.pop.best().score()
        self.pop.stats['current']['avg'] = my_mean(s)
        self.pop.stats['current']['min'] = min(s)
        if len(s) > 1: self.pop.stats['current']['dev'] = my_std(s)
        else: self.pop.stats['current']['dev'] = 0
        try: self.pop.stats['overall']['max'] = max(self.pop.stats['overall']['max'],
                                                            self.pop.stats['current']['max'])
        except KeyError: self.pop.stats['overall']['max'] = self.pop.stats['current']['max']
        try: self.pop.stats['overall']['min'] = min(self.pop.stats['overall']['min'],
                                                            self.pop.stats['current']['min'])
        except KeyError: self.pop.stats['overall']['min'] = self.pop.stats['current']['min']
        self.pop.stats
        self.pop.stats['pop_evals'] = self.GAs[0].stats['pop_evals']
        self.stats.update(self.pop.stats)


    def step(self,steps=1,mode = 'serial'):
        for st in range(steps):
            b = timer()
            cnt = 0
            #self.pop._size(0) # used if we keep a single pop
            if mode[0] == 'p' or mode[0] == 'P':
                """
                    sys.setcheckinterval(100)
                    finished = sync.event()
                    bar = sync.barrier(len(self.GAs))
                    for ga in self.GAs:
                            thread.start_new_thread(GA_stepper,(bar,finished,ga))
                    finished.wait()
                    sys.setcheckinterval(10)
                    """
            else:
                for ga in self.GAs: ga.step()

            for ga in self.GAs:
                #replace the worst member of the local pop
                self.pop[-1] = ga.pop.best()
                self.pop.sort()
                #probabaly not the fast approach to things, but... keeps an itelligent pop
                #for ind in ga.pop: self.pop.append(ind)

            self.migrate()
            self.gen = self.gen + 1
            e = timer(); self.step_time = e - b
            self.update_stats()
            self.db_entry['best_scores'].append(self.stats['current']['max'])

    def pop_deviation(self):
        """calculate the std deviation across all populations"""
        all_scores = []
        for ga in self.GAs:
            all_scores = all_scores + ga.pop.scores().tolist()
        if len(all_scores) > 1:
            denom = my_mean(all_scores)
            if denom == 0.: denom = .0001  # what should I do here?
            return abs(my_std(all_scores)/denom)
        return 0

    def evolve(self, mode = 'serial'):
        b = timer()
        self.initialize(mode)
        self.pre_evolve()
        self.p_dev = self.pop_deviation()
        self.iteration_output()
        while ( self.gen < self.settings['gens'] and
                        self.settings['p_deviation'] < self.p_dev  ):
            self.step(1,mode)
            self.p_dev = self.pop_deviation()
            self.iteration_output()
        self.update_dbase() #enter status prior to post_evolve in dbase
        self.post_evolve()
        self.db_entry['run_time'] = timer() - b
        self.write_dbase()

    def migrate(self):
        """Migration moves members from one population to another.  It takes
           the best N individuals of GAs[0] and puts clones of them into
           GAs[1], replacing the worst individuals.  Likewise,
           GAs[1] best replace GAs[2] worst.  GAs[-1] best are moved
           to GAs[0].  This 'stepping stone' migration of individuals allows
           good ideas to move from one population to another, but still
           allows the individual population to maintain som diversity.
        """
        if len(self.GAs) == 1: return
        migrants = self.settings['migrants']
        if migrants > self.settings['pop_size']:
            migrants = self.settings['pop_size']

        movers = []
        for i in range(migrants):
            movers.append(self.GAs[0].pop[i])
        for ga in self.GAs[1:]:
            for i in range(migrants):
                ga.pop[-i] = movers[i].clone() #replace the worst individual
                movers[i] = ga.pop[i]
        for i in range(migrants):
            self.GAs[0].pop[-i] = movers[i].clone() #replace the worst individual


"""
def GA_stepper(bar,finished,GA):
        t1 = timer()
        GA.step()
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()

def GA_initializer(bar,finished,GA):
        t1 = timer()
        GA.initialize(reseed = 0)
        t2 = timer()
        print 'thread ' + `thread.get_ident()` + 'time ' + `t2-t1` + ' sec.'
        bar.enter()
        finished.post()
"""