1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
import numpy as sb
pi = sb.pi
# fast discrete cosine transforms of real sequences (using the fft)
# These implement the DCT-II and inverse DCT-II (DCT-III)
# described at http://en.wikipedia.org/wiki/Discrete_cosine_transform
def dct(x,axis=-1):
"""Discrete cosine transform based on the FFT.
For even-length signals it uses an N-point FFT
For odd-length signals it uses a 2N-point FFT.
"""
n = len(x.shape)
N = x.shape[axis]
even = (N%2 == 0)
slices = [None]*4
for k in range(4):
slices[k] = []
for j in range(n):
slices[k].append(slice(None))
if even:
xtilde = 0.0*x
slices[0][axis] = slice(None,N/2)
slices[1][axis] = slice(None,None,2)
slices[2][axis] = slice(N/2,None)
slices[3][axis] = slice(N,None,-2)
else:
newshape = list(x.shape)
newshape[axis] = 2*N
xtilde = sb.empty(newshape,sb.float64)
slices[0][axis] = slice(None,N)
slices[2][axis] = slice(N,None)
slices[3][axis] = slice(None,None,-1)
for k in range(4):
slices[k] = tuple(slices[k])
xtilde[slices[0]] = x[slices[1]]
xtilde[slices[2]] = x[slices[3]]
Xt = sb.fft(xtilde,axis=axis)
pk = sb.exp(-1j*pi*sb.arange(N)/(2*N))
newshape = sb.ones(n)
newshape[axis] = N
pk.shape = newshape
if not even:
pk /= 2;
Xt = Xt[slices[0]]
return sb.real(Xt*pk)
def idct(v,axis=-1):
n = len(v.shape)
N = v.shape[axis]
even = (N%2 == 0)
slices = [None]*4
for k in range(4):
slices[k] = []
for j in range(n):
slices[k].append(slice(None))
k = sb.arange(N)
if even:
ak = sb.r_[1.0,[2]*(N-1)]*sb.exp(1j*pi*k/(2*N))
newshape = sb.ones(n)
newshape[axis] = N
ak.shape = newshape
xhat = sb.real(sb.ifft(v*ak,axis=axis))
x = 0.0*v
slices[0][axis] = slice(None,None,2)
slices[1][axis] = slice(None,N/2)
slices[2][axis] = slice(N,None,-2)
slices[3][axis] = slice(N/2,None)
for k in range(4):
slices[k] = tuple(slices[k])
x[slices[0]] = xhat[slices[1]]
x[slices[2]] = xhat[slices[3]]
return x
else:
ak = 2*sb.exp(1j*pi*k/(2*N))
newshape = sb.ones(n)
newshape[axis] = N
ak.shape = newshape
newshape = list(v.shape)
newshape[axis] = 2*N
Y = zeros(newshape,sb.Complex)
#Y[:N] = ak*v
#Y[(N+1):] = conj(Y[N:0:-1])
slices[0][axis] = slice(None,N)
slices[1][axis] = slice(None,None)
slices[2][axis] = slice(N+1,None)
slices[3][axis] = slice((N-1),0,-1)
Y[slices[0]] = ak*v
Y[slices[2]] = conj(Y[slices[3]])
x = sb.real(sb.ifft(Y,axis=axis))[slices[0]]
return x
def dct2(x,axes=(-1,-2)):
return dct(dct(x,axis=axes[0]),axis=axes[1])
def idct2(v,axes=(-1,-2)):
return idct(idct(v,axis=axes[0]),axis=axes[1])
def dctn(x,axes=None):
if axes is None:
axes = sb.arange(len(x.shape))
res = x
for k in axes:
res = dct(res,axis=k)
return res
def idctn(v,axes=None):
if axes is None:
axes = sb.arange(len(v.shape))
res = v
for k in axes:
res = idct(res,axis=k)
return res
def makeC(N):
n,l = ogrid[:N,:N]
C = sb.cos(pi*(2*n+1)*l/(2*N))
return C
def dct2raw(x):
M,N = x.shape
CM = makeC(M)
CN = makeC(N)
return dot(transpose(CM),dot(x,CN))
def idct2raw(v):
M,N = v.shape
iCM = linalg.inv(makeC(M))
iCN = linalg.inv(makeC(N))
return dot(transpose(iCM),dot(v,iCN))
def makeS(N):
n,k = ogrid[:N,:N]
C = sin(pi*(k+1)*(n+1)/(N+1))
return C
# DST-I
def dst(x,axis=-1):
"""Discrete Sine Transform (DST-I)
Implemented using 2(N+1)-point FFT
xsym = r_[0,x,0,-x[::-1]]
DST = (-imag(fft(xsym))/2)[1:(N+1)]
adjusted to work over an arbitrary axis for entire n-dim array
"""
n = len(x.shape)
N = x.shape[axis]
slices = [None]*3
for k in range(3):
slices[k] = []
for j in range(n):
slices[k].append(slice(None))
newshape = list(x.shape)
newshape[axis] = 2*(N+1)
xtilde = sb.zeros(newshape,sb.float64)
slices[0][axis] = slice(1,N+1)
slices[1][axis] = slice(N+2,None)
slices[2][axis] = slice(None,None,-1)
for k in range(3):
slices[k] = tuple(slices[k])
xtilde[slices[0]] = x
xtilde[slices[1]] = -x[slices[2]]
Xt = sb.fft(xtilde,axis=axis)
return (-sb.imag(Xt)/2)[slices[0]]
def idst(v,axis=-1):
n = len(v.shape)
N = v.shape[axis]
slices = [None]*3
for k in range(3):
slices[k] = []
for j in range(n):
slices[k].append(slice(None))
newshape = list(v.shape)
newshape[axis] = 2*(N+1)
Xt = sb.zeros(newshape,sb.Complex)
slices[0][axis] = slice(1,N+1)
slices[1][axis] = slice(N+2,None)
slices[2][axis] = slice(None,None,-1)
val = 2j*v
for k in range(3):
slices[k] = tuple(slices[k])
Xt[slices[0]] = -val
Xt[slices[1]] = val[slices[2]]
xhat = sb.real(sb.ifft(Xt,axis=axis))
return xhat[slices[0]]
def dst2(x,axes=(-1,-2)):
return dst(dst(x,axis=axes[0]),axis=axes[1])
def idst2(v,axes=(-1,-2)):
return idst(idst(v,axis=axes[0]),axis=axes[1])
def dstn(x,axes=None):
if axes is None:
axes = sb.arange(len(x.shape))
res = x
for k in axes:
res = dst(res,axis=k)
return res
def idstn(v,axes=None):
if axes is None:
axes = sb.arange(len(v.shape))
res = v
for k in axes:
res = idst(res,axis=k)
return res
def digitrevorder(x,base):
x = sb.asarray(x)
rem = N = len(x)
L = 0
while 1:
if rem < base:
break
intd = rem // base
if base*intd != rem:
raise ValueError, "Length of data must be power of base."
rem = intd
L += 1
vec = r_[[base**n for n in range(L)]]
newx = x[sb.newaxis,:]*vec[:,sb.newaxis]
# compute digits
for k in range(L-1,-1,-1):
newx[k] = x // vec[k]
x = x - newx[k]*vec[k]
# reverse digits
newx = newx[::-1,:]
x = 0*x
# construct new result from reversed digts
for k in range(L):
x += newx[k]*vec[k]
return x
def bitrevorder(x):
return digitrevorder(x,2)
# needs to be fixed
def wht(data):
"""Walsh-Hadamaard Transform (sequency ordered)
adapted from MATLAB algorithm published on the web by
Author: Gylson Thomas
e-mail: gylson_thomas@yahoo.com
Asst. Professor, Electrical and Electronics Engineering Dept.
MES College of Engineering Kuttippuram,
Kerala, India, February 2005.
copyright 2005.
Reference: N.Ahmed, K.R. Rao, "Orthogonal Transformations for
Digital Signal Processing" Spring Verlag, New York 1975. page-111.
"""
N = len(data)
L = sb.log2(N);
if ((L-sb.floor(L)) > 0.0):
raise ValueError, "Length must be power of 2"
x=bitrevorder(data);
k1=N; k2=1; k3=N/2;
for i1 in range(1,L+1): #Iteration stage
L1=1;
for i2 in range(1,k2+1):
for i3 in range(1,k3+1):
i=i3+L1-1; j=i+k3;
temp1= x[i-1]; temp2 = x[j-1];
if (i2 % 2) == 0:
x[i-1] = temp1 - temp2;
x[j-1] = temp1 + temp2;
x[i-1] = temp1 + temp2;
x[j-1] = temp1 - temp2;
L1=L1+k1;
k1 = k1/2; k2 = k2*2; k3 = k3/2;
x = x*1.0/N; # Delete this line for inverse wht
return x
|