File: transforms.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (283 lines) | stat: -rw-r--r-- 7,653 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as sb
pi = sb.pi

# fast discrete cosine transforms of real sequences (using the fft)
#  These implement the DCT-II and inverse DCT-II (DCT-III)
#  described at http://en.wikipedia.org/wiki/Discrete_cosine_transform

def dct(x,axis=-1):
    """Discrete cosine transform based on the FFT.

    For even-length signals it uses an N-point FFT
    For odd-length signals it uses a 2N-point FFT.
    """
    n = len(x.shape)
    N = x.shape[axis]
    even = (N%2 == 0)
    slices = [None]*4
    for k in range(4):
        slices[k] = []
        for j in range(n):
            slices[k].append(slice(None))
    if even:
        xtilde = 0.0*x
        slices[0][axis] = slice(None,N/2)
        slices[1][axis] = slice(None,None,2)
        slices[2][axis] = slice(N/2,None)
        slices[3][axis] = slice(N,None,-2)
    else:
        newshape = list(x.shape)
        newshape[axis] = 2*N
        xtilde = sb.empty(newshape,sb.float64)
        slices[0][axis] = slice(None,N)
        slices[2][axis] = slice(N,None)
        slices[3][axis] = slice(None,None,-1)

    for k in range(4):
        slices[k] = tuple(slices[k])
    xtilde[slices[0]] = x[slices[1]]
    xtilde[slices[2]] = x[slices[3]]
    Xt = sb.fft(xtilde,axis=axis)
    pk = sb.exp(-1j*pi*sb.arange(N)/(2*N))
    newshape = sb.ones(n)
    newshape[axis] = N
    pk.shape = newshape

    if not even:
        pk /= 2;
        Xt = Xt[slices[0]]

    return sb.real(Xt*pk)


def idct(v,axis=-1):
    n = len(v.shape)
    N = v.shape[axis]
    even = (N%2 == 0)
    slices = [None]*4
    for k in range(4):
        slices[k] = []
        for j in range(n):
            slices[k].append(slice(None))
    k = sb.arange(N)
    if even:
        ak = sb.r_[1.0,[2]*(N-1)]*sb.exp(1j*pi*k/(2*N))
        newshape = sb.ones(n)
        newshape[axis] = N
        ak.shape = newshape
        xhat = sb.real(sb.ifft(v*ak,axis=axis))
        x = 0.0*v
        slices[0][axis] = slice(None,None,2)
        slices[1][axis] = slice(None,N/2)
        slices[2][axis] = slice(N,None,-2)
        slices[3][axis] = slice(N/2,None)
        for k in range(4):
            slices[k] = tuple(slices[k])
        x[slices[0]] = xhat[slices[1]]
        x[slices[2]] = xhat[slices[3]]
        return x
    else:
        ak = 2*sb.exp(1j*pi*k/(2*N))
        newshape = sb.ones(n)
        newshape[axis] = N
        ak.shape = newshape
        newshape = list(v.shape)
        newshape[axis] = 2*N
        Y = zeros(newshape,sb.Complex)
        #Y[:N] = ak*v
        #Y[(N+1):] = conj(Y[N:0:-1])
        slices[0][axis] = slice(None,N)
        slices[1][axis] = slice(None,None)
        slices[2][axis] = slice(N+1,None)
        slices[3][axis] = slice((N-1),0,-1)
        Y[slices[0]] = ak*v
        Y[slices[2]] = conj(Y[slices[3]])
        x = sb.real(sb.ifft(Y,axis=axis))[slices[0]]
        return x

def dct2(x,axes=(-1,-2)):
    return dct(dct(x,axis=axes[0]),axis=axes[1])

def idct2(v,axes=(-1,-2)):
    return idct(idct(v,axis=axes[0]),axis=axes[1])

def dctn(x,axes=None):
    if axes is None:
        axes = sb.arange(len(x.shape))
    res = x
    for k in axes:
        res = dct(res,axis=k)
    return res

def idctn(v,axes=None):
    if axes is None:
        axes = sb.arange(len(v.shape))
    res = v
    for k in axes:
        res = idct(res,axis=k)
    return res


def makeC(N):
    n,l = ogrid[:N,:N]
    C = sb.cos(pi*(2*n+1)*l/(2*N))
    return C

def dct2raw(x):
    M,N = x.shape
    CM = makeC(M)
    CN = makeC(N)
    return dot(transpose(CM),dot(x,CN))

def idct2raw(v):
    M,N = v.shape
    iCM = linalg.inv(makeC(M))
    iCN = linalg.inv(makeC(N))
    return dot(transpose(iCM),dot(v,iCN))

def makeS(N):
    n,k = ogrid[:N,:N]
    C = sin(pi*(k+1)*(n+1)/(N+1))
    return C

# DST-I
def dst(x,axis=-1):
    """Discrete Sine Transform (DST-I)

    Implemented using 2(N+1)-point FFT
    xsym = r_[0,x,0,-x[::-1]]
    DST = (-imag(fft(xsym))/2)[1:(N+1)]

    adjusted to work over an arbitrary axis for entire n-dim array
    """
    n = len(x.shape)
    N = x.shape[axis]
    slices = [None]*3
    for k in range(3):
        slices[k] = []
        for j in range(n):
            slices[k].append(slice(None))
    newshape = list(x.shape)
    newshape[axis] = 2*(N+1)
    xtilde = sb.zeros(newshape,sb.float64)
    slices[0][axis] = slice(1,N+1)
    slices[1][axis] = slice(N+2,None)
    slices[2][axis] = slice(None,None,-1)
    for k in range(3):
        slices[k] = tuple(slices[k])
    xtilde[slices[0]] = x
    xtilde[slices[1]] = -x[slices[2]]
    Xt = sb.fft(xtilde,axis=axis)
    return (-sb.imag(Xt)/2)[slices[0]]

def idst(v,axis=-1):
    n = len(v.shape)
    N = v.shape[axis]
    slices = [None]*3
    for k in range(3):
        slices[k] = []
        for j in range(n):
            slices[k].append(slice(None))
    newshape = list(v.shape)
    newshape[axis] = 2*(N+1)
    Xt = sb.zeros(newshape,sb.Complex)
    slices[0][axis] = slice(1,N+1)
    slices[1][axis] = slice(N+2,None)
    slices[2][axis] = slice(None,None,-1)
    val = 2j*v
    for k in range(3):
        slices[k] = tuple(slices[k])
    Xt[slices[0]] = -val
    Xt[slices[1]] = val[slices[2]]
    xhat = sb.real(sb.ifft(Xt,axis=axis))
    return xhat[slices[0]]

def dst2(x,axes=(-1,-2)):
    return dst(dst(x,axis=axes[0]),axis=axes[1])

def idst2(v,axes=(-1,-2)):
    return idst(idst(v,axis=axes[0]),axis=axes[1])

def dstn(x,axes=None):
    if axes is None:
        axes = sb.arange(len(x.shape))
    res = x
    for k in axes:
        res = dst(res,axis=k)
    return res

def idstn(v,axes=None):
    if axes is None:
        axes = sb.arange(len(v.shape))
    res = v
    for k in axes:
        res = idst(res,axis=k)
    return res

def digitrevorder(x,base):
    x = sb.asarray(x)
    rem = N = len(x)
    L = 0
    while 1:
        if rem < base:
            break
        intd = rem // base
        if base*intd != rem:
            raise ValueError, "Length of data must be power of base."
        rem = intd
        L += 1
    vec = r_[[base**n for n in range(L)]]
    newx = x[sb.newaxis,:]*vec[:,sb.newaxis]
    # compute digits
    for k in range(L-1,-1,-1):
        newx[k] = x // vec[k]
        x = x - newx[k]*vec[k]
    # reverse digits
    newx = newx[::-1,:]
    x = 0*x
    # construct new result from reversed digts
    for k in range(L):
        x += newx[k]*vec[k]
    return x


def bitrevorder(x):
    return digitrevorder(x,2)


# needs to be fixed
def wht(data):
    """Walsh-Hadamaard Transform (sequency ordered)

    adapted from MATLAB algorithm published on the web by
    Author: Gylson Thomas
    e-mail: gylson_thomas@yahoo.com
    Asst. Professor, Electrical and Electronics Engineering Dept.
    MES College of Engineering Kuttippuram,
    Kerala, India, February 2005.
    copyright 2005.
    Reference: N.Ahmed, K.R. Rao, "Orthogonal Transformations for
    Digital Signal Processing" Spring Verlag, New York 1975. page-111.
    """
    N = len(data)
    L = sb.log2(N);
    if ((L-sb.floor(L)) > 0.0):
        raise ValueError, "Length must be power of 2"
    x=bitrevorder(data);

    k1=N; k2=1; k3=N/2;
    for i1 in range(1,L+1):  #Iteration stage
        L1=1;
        for i2 in range(1,k2+1):
            for i3 in range(1,k3+1):
                i=i3+L1-1; j=i+k3;
                temp1= x[i-1]; temp2 = x[j-1];
                if (i2 % 2) == 0:
                    x[i-1] = temp1 - temp2;
                    x[j-1] = temp1 + temp2;
                    x[i-1] = temp1 + temp2;
                    x[j-1] = temp1 - temp2;
                L1=L1+k1;
            k1 = k1/2;  k2 = k2*2;  k3 = k3/2;
    x = x*1.0/N; # Delete this line for inverse wht
    return x