File: links.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (178 lines) | stat: -rw-r--r-- 2,992 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import numpy as N
import scipy.stats

class Link:

    def initialize(self, Y):
        return N.asarray(Y).mean() * N.ones(Y.shape)

class Logit(Link):

    """
    The logit transform as a link function:

    g(x) = log(x / (1 - x))
    """

    tol = 1.0e-10

    def clean(self, p):
        return N.clip(p, Logit.tol, 1. - Logit.tol)

    def __call__(self, p):
        p = self.clean(p)
        return N.log(p / (1. - p))

    def inverse(self, z):
        t = N.exp(z)
        return t / (1. + t)

    def deriv(self, p):
        p = self.clean(p)
        return 1. / (p * (1 - p))

logit = Logit()

class Power(Link):

    """
    The power transform as a link function:

    g(x) = x**power

    """

    def __init__(self, power=1.):
        self.power = power

    def __call__(self, x):
        return N.power(x, self.power)

    def inverse(self, x):
        return N.power(x, 1. / self.power)

    def deriv(self, x):
        return self.power * N.power(x, self.power - 1)

inverse = Power(power=-1.)
inverse.__doc__ = """

The inverse transform as a link function:

g(x) = 1 / x
"""

sqrt = Power(power=0.5)
sqrt.__doc__ = """

The square-root transform as a link function:

g(x) = sqrt(x)
"""

inverse_squared = Power(power=-2.)
inverse_squared.__doc__ = """

The inverse squared transform as a link function:

g(x) = 1 / x**2
"""

identity = Power(power=1.)
identity.__doc__ = """

The identity transform as a link function:

g(x) = x
"""

class Log(Link):

    """
    The log transform as a link function:

    g(x) = log(x)

    """

    tol = 1.0e-10

    def clean(self, x):
        return N.clip(x, Logit.tol, N.inf)

    def __call__(self, x, **extra):
        x = self.clean(x)
        return N.log(x)

    def inverse(self, z):
        return N.exp(z)

    def deriv(self, x):
        x = self.clean(x)
        return 1. / x

log = Log()

class CDFLink(Logit):

    """
    The use the CDF of a scipy.stats distribution as a link function:

    g(x) = dbn.ppf(x)

    """

    def __init__(self, dbn=scipy.stats.norm):
        self.dbn = dbn

    def __call__(self, p):
        p = self.clean(p)
        return self.dbn.ppf(p)

    def inverse(self, z):
        return self.dbn.cdf(z)

    def deriv(self, p):
        p = self.clean(p)
        return 1. / self.dbn.pdf(self(p))

probit = CDFLink()
probit.__doc__ = """

The probit (standard normal CDF) transform as a link function:

g(x) = scipy.stats.norm.ppf(x)

"""

cauchy = CDFLink(dbn=scipy.stats.cauchy)
cauchy.__doc__ = """

The Cauchy (standard Cauchy CDF) transform as a link function:

g(x) = scipy.stats.cauchy.ppf(x)

"""

class CLogLog(Logit):

    """
    The complementary log-log transform as a link function:

    g(x) = log(-log(x))

    """

    def __call__(self, p):
        p = self.clean(p)
        return N.log(-N.log(p))

    def inverse(self, z):
        return N.exp(-N.exp(z))

    def deriv(self, p):
        p = self.clean(p)
        return -1. / (N.log(p) * p)

cloglog = CLogLog()