1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
""" General purpose classes for plotting utility.
Many of these classes and function are helpful for laying out the
location of element of a graph (titles, tick labels, ticks, etc).
A simple class for handling properties of graph elements is also
included. Everything here is independent of any specific GUI or
drawing platform
.
The classes and functions break out into 3 main sections:
General layout:
class box_object -- Helps align rectangular graph elements
relative to one another. Currently only
Int values are allowed for box dimensions.
class point_object -- Alignment of points with one-another or
box_objects.
Property Management:
class poperty_object -- base class for any graph object that
manages a set of properties. Pretty
low-tech compared to graphite and Zope.
It could use additions for error checking.
Axis layout functions:
auto_ticks -- find set of tick locations for an axis.
format_tick_labels -- convert the numerical tick values to strings
for labels
auto_interval -- determine an appropriate tick interval for axis
auto_bounds -- determine appropriate end points for axis
and a few others...
"""
#----------------------------------------------------------
# General layout classes
#----------------------------------------------------------
from Numeric import *
from numpy.core.umath import *
import numpy.limits as limits
import numpy as misc
LEFT,RIGHT,TOP,BOTTOM = 0,1,2,3 # used by same_as() method
TYPE = Int # all values in a box_object are forced to be integers
# might change this later when we've looked at round off
# issues more thoroughly.
class box_object:
""" Helpful for laying out rectangles.
This class has three general areas of functionality:
1. Retreive information about a box such as it's size,
the x-coordinate of its left side, and others.
2. Specify the location of one box (rectangle) in relation to
another using methods such as left_of(), above(),
or center_on().
3. Change the size (and location) of a box by either choping off
a portion of the box using trim_right(), trim_left(), and
others or inflating the box by a percentage.
"""
def __init__(self,topleft,size):
self.topleft = asarray(topleft,TYPE)
self._size = asarray(size,TYPE)
#--------------- interrogation functions --------------------#
def left(self):
"Return the x-coordinate of the left edge."
return self.topleft[0]
def right(self):
"Return the x-coordinate of the right edge."
return self.topleft[0] + self.width()
def top(self):
"Return the y-coordinate of the top edge."
return self.topleft[1]
def bottom(self):
"Return the y-coordinate of the bottom edge."
return self.topleft[1] + self.height()
def center_x(self):
"Return the x-coordinate of the boxes center."
return self.topleft[0] + .5 * self.width()
def center_y(self):
"Return the y-coordinate of the left edge."
return self.topleft[1] + .5 * self.height()
def size(self):
"Return the size of the box as array((width,height))."
return self._size
def width(self):
"Return the width of the box (length along x-axis)"
return self.size()[0]
def height(self):
"Return the width of the box (length along y-axis)"
return self.size()[1]
def center(self):
"Return the coordinates of the boxes center as an array"
return self.topleft + .5 * self.size()
def radial(self,angle):
""" Length of a ray extending from the center of the box at the
specified polar angle (in radians) to the edge of the box"""
# Could have some div_by_zero errors if h or w = 0
# --> haven't thought about this much
w,h = self.size()
slope = abs(tan(angle))
if slope > float(h)/w:
s1 = h*.5
s2 = s1/slope
else:
s1 = w*.5
s2 = s1*slope
return sqrt(s1**2+s2**2)
#------------- Moving and resizing methods ----------------#
def move(self,location):
""" Move box so that its top left corner is located at
the specified location. Location is an (x,y) pair."""
self.topleft = asarray(location,TYPE)
def translate(self,offset):
""" Shift the box's location by the amount specifed in
offset. Offset is an (x,y) pair."""
self.topleft = self.topleft + asarray(offset,TYPE)
def set_size(self,sz):
""" Set the size of the box. sz is an (x,y) pair."""
self._size = asarray(sz,TYPE)
def set_width(self,width):
""" Set the width of the box. sz is a numeric value"""
self.set_size((width,self.height()))
def set_height(self,height):
""" Set the height of the box. sz is a numeric value."""
self.set_size((self.width(),height))
#-------------------- Relational Positioning ----------------#
def above(self,other_box,margin=0):
"""Move box so that its bottom edge has same y-coord of the
top edge of other_box. The size does not change. Optionally,
margin specifies the gap between the boxes."""
self.topleft[1] = other_box.top() - self.height() - margin
def below(self,other_box,margin=0):
"""Move box so that its top edge has same y-coord of the
bottom edge of other_box. The size does not change. Optionally,
margin specifies the gap between the boxes."""
self.topleft[1] = other_box.bottom() + margin
def left_of(self,other_box,margin=0):
"""Move box so that its right edge has same x-coord of the
left edge of other_box. The size does not change. Optionally,
margin specifies the gap between the boxes."""
self.topleft[0] = other_box.left() - self.width() - margin
def right_of(self,other_box,margin=0):
"""Move box so that its left edge has same x-coord of the
right edge of other_box. The size does not change. Optionally,
margin specifies the gap between the boxes."""
self.topleft[0] = other_box.right() + margin
def center_on_x_of(self,other_box):
"""Move box so that x-coord of its center equals the x-coord of
other_box's center. The size does not change."""
self.topleft[0] = other_box.center_x() - .5 * self.width()
def center_on_y_of(self,other_box):
"""Move box so that y-coord of its center equals the y-coord of
other_box's center. The size does not change."""
self.topleft[1] = other_box.center_y() - .5 * self.height()
def center_on(self,other_box):
"""Move box so that its center is the same as other_box's center.
The size does not change."""
self.center_on_x_of(other_box)
self.center_on_y_of(other_box)
def same_as(self,other_box,edge,margin=0):
"""Set the specified edge of this box to be aligned with the
same edge of other_box. The size does not change.
"""
if edge == LEFT:
self.topleft[0] = other_box.left() + margin
elif edge == RIGHT:
self.topleft[0] = other_box.right() - margin
elif edge == TOP:
self.topleft[1] = other_box.top() + margin
elif edge == BOTTOM:
self.topleft[1] = other_box.bottom() - margin
else:
raise ValueError, "edge should only be plt.xxx where xxx is" \
" LEFT,RIGHT,TOP, or BOTTOM"
def radial_offset_from(self,other_box,angle,margin=0):
""" Move this box so that its center is aligned along a radial ray
out of other_box's center at the specified angle (in radians),
and its edge touches the appropriate edge of other_box.
Optionally, margin specifies the size of the gap (along the ray)
between the two boxes.
"""
dist = other_box.radial(angle) + margin + self.radial(angle)
new_center = other_box.center() + rotate((dist,0),(0,0),angle)
self.center_on(point_object(new_center.astype(TYPE)))
#------------------ Trim the edges of the box ----------------#
def trim_top(self,amount,margin=0):
""" Remove amount from the top edge of the box. The size and
topleft corner of the box are altered appropriately. Margin
specifies an additional amount to be removed.
"""
self.topleft[1] = self.topleft[1] + amount
self.set_height( self.height() - amount - margin)
def trim_left(self,amount,margin=0):
""" Remove amount from the left edge of the box. The size and
topleft corner of the box are altered appropriately. Margin
specifies an additional amount to be removed.
"""
self.topleft[0] = self.topleft[0] + amount
self.set_width( self.width() - amount - margin)
def trim_right(self,amount,margin=0):
""" Remove amount from the right edge of the box. The size and
is altered appropriately. Margin specifies an additional amount
to be removed.
"""
self.set_width(self.width() - amount - margin)
def trim_bottom(self,amount,margin=0):
""" Remove amount from the bottom edge of the box. The size
is altered appropriately. Margin specifies an additional
amount to be removed.
"""
self.set_height(self.height() - amount - margin)
def trim_all(self,amount,margin=0):
""" Remove amount from the all edges of the box. The size and
topleft corner of the bow are altered appropriately. Margin
specifies an additional amount to be removed.
"""
self.trim_top(amount,margin)
self.trim_bottom(amount,margin)
self.trim_left(amount,margin)
self.trim_bottom(amount,margin)
def inflate(self,percent):
""" Expand the box in all directions by the specified percentage.
Values < 1 shrink the box. The center of the box remains the same.
"""
old_size = self.size()
inflated = old_size * percent
shift = .5 * (old_size - inflated)
self.topleft = floor(self.topleft + shift).astype(TYPE)
self.set_size(floor(inflated).astype(TYPE))
#------------------ test point relationships ----------------#
def contains(self,pos):
l,r,t,b = self.left(),self.right(),self.top(),self.bottom()
#print self.text, self.size(), l,r,t,b
#print pos[0],pos[1]
if ((l <= pos[0] <= r) and (t <= pos[1] <= b)):
return 1
return 0
class point_object(box_object):
""" Useful for laying points (and boxes) in relation to one another.
point_object is a degenerate case of a box_object that has
zero size. The set_size() method is not allowed for points. As
a result, size altering methods such as set_height and trimming
functions are not valid. Also, the radial() method always returns
zero. Other than that, the standard box_object methods work.
point_objects can also be used as arguments to box_object methods.
"""
def __init__(self,pt):
box_object.__init__(self,pt,(0,0))
def radial(self,angle):
return 0
def set_size(self,sz):
# this'll catch all set_size, trim_xxx and other inappropriate methods
raise TypeError, "can't set the size of a point_object"
def bounding_points(objects):
l = min(map(lambda x: x.left(),objects))
t = min(map(lambda x: x.top(),objects))
r = min(map(lambda x: x.right(),objects))
b = min(map(lambda x: x.bottom(),objects))
return (l,t),(r,b)
def bounding_box(objects):
l = min(map(lambda x: x.left(),objects))
t = min(map(lambda x: x.top(),objects))
r = min(map(lambda x: x.right(),objects))
b = min(map(lambda x: x.bottom(),objects))
return box_object((l,t),(r-l,b-t))
#----------------------------------------------------------
# Simple Property class
#----------------------------------------------------------
class property_object:
""" Base class for graph object with properties like 'color', 'font', etc.
Many object have a standard set of properties that describe the
object. Text objects, for example, have a color, font, and style.
These attirbutes often have default values and perhaps only a range
of acceptable values. Every class derived from this one must have
the variable "_attributes" defined at the class level. The keys of
this dictionary are the names of the class attributes. The value
for each key is a list with three entries. The first is the default
value for the attribute, the second is a list of acceptable values
and the third is a short text description of the attribute. FOr
example:
class text_object(property_class):
_attributes = { 'color': ['black',['black','red','blue'],
"The color of the text" ],
'style': ['normal',['normal','bold'],
"The style of the text" ],}
Currently only the first entry is used. The second is rather limited
in functionality, but might be useful for automatically generating
dialog boxes.
Graphite has a more flexible property system, but it is somewhat
complex. Zope also has a nice property structure. If we run into
major limitations with this 15 line implementation, we might look
here for inspiration (or adoption...).
There is no type safety enforced here which could cause so problems
for unsuspecting users. Maybe the optional typing of future Python
versions will mitigate this.
"""
def __init__(self, kw, **attr):
attrs = {};attrs.update(kw);
if attr: attrs.update(attr)
for name, value in self._attributes.items():
val = value[0]
try:
val = attrs[name]
except KeyError: pass
self.__dict__[name] = val
def reset_default(self):
""" Reset the objects attributes to their default values.
"""
for name, value in self._attributes.items():
self.__dict__[name] = value[0]
def clone_properties(self,other):
""" Reset the objects attributes to their default values.
"""
for name in other._attributes.keys():
self.__dict__[name] = other.__dict__[name]
#----------------------------------------------------------#
#-------------- Axis and Tick mark utilities --------------#
#----------------------------------------------------------#
def rotate(pts,center,angle):
""" pts is a Nx2 array of N (x,y) point pairs. The points
are rotated counter-clockwise around a center (x,y) point
the specified angle (in radians).
"""
t_pts = asarray(pts) - asarray(center)
transform = array( ((cos(angle),-sin(angle)),
(sin(angle), cos(angle))) )
rotated = transpose(dot(transform, transpose(t_pts)))
t_pts = around(rotated + center)
return t_pts.astype(TYPE)
def log2(num):
""" Log base 2 of a number ( or array)
!! 1e-16 is here to prevent errors when log is 0
"""
if is_number(num) and num == 0:
num = num + 1e-16
elif type(num) == type(array([])):
putmask(num,equal(num,0.),1e-16)
return log10(num)/log10(2)
def is_base2(range):
" True if value is base 2 (2, 4, 8, 16, ...)"
l = log2(range)
return (l == floor(l) and l > 0.0)
def is_number(val):
" Returns 1 if value is an integer or double, 0 otherwise."
return (type(val) in [type(0.0),type(0)])
default_bounds = ['auto','auto','auto']
def auto_ticks(data_bounds, bounds_info = default_bounds):
""" Find locations for axis tick marks.
Calculate the location for tick marks on an axis. data_bounds is a
sequence of 2 numbers specifying the maximum and minimum values of
the data along this axis. bounds_info is a sequence of 3 values that
specify how the axis end points and tick interval are calculated. An
array of tick mark locations is returned from the function. The
first and last tick entries are the axis end points.
data_bounds -- (lower,upper). The maximum and minimum values of the
data long this axis. If any of the settings in
bounds_info are 'auto' or 'fit', the axis properties
are calculated automatically from these settings.
bounds_info -- (lower,upper,interval). Each entry can either be
a numerical value or a string. If a number,the axis
property is set to that value. If the entry
is 'auto', the property is calculated automatically.
lower and upper can also be 'fit' in which case
the axis end points are set equal to the values
in data_bounds.
"""
# pretty ugly code...
# man, this needs some testing.
# hmmm, all the nan stuff should have been handled before this
# point...
#from misc import nan_to_num, isinf
#if is_number(bounds_info[0]): lower = nan_to_num(bounds_info[0])
#else: lower = nan_to_num(data_bounds[0])
#if is_number(bounds_info[1]): upper = nan_to_num(bounds_info[1])
#else: upper = nan_to_num(data_bounds[1])
#if is_number(bounds_info[2]): interval = nan_to_num(bounds_info[2])
#else: interval = bounds_info[2]
if is_number(bounds_info[0]): lower = bounds_info[0]
else: lower = data_bounds[0]
if is_number(bounds_info[1]): upper = bounds_info[1]
else: upper = data_bounds[1]
interval = bounds_info[2]
#print 'raw input:', lower,upper,interval
#print 'raw interval:', interval
if interval in ['linear','auto']:
rng = abs(upper - lower)
if rng == 0.:
# anything more intelligent to do here?
interval = .5
lower,upper = data_bounds + array((-.5,.5))
if is_base2(rng) and is_base2(upper) and rng > 4:
if rng == 2:
interval = 1
elif rng == 4:
interval = 4
else:
interval = rng / 4 # maybe we want it 8
else:
interval = auto_interval((lower,upper))
elif type(interval) in [type(0.0),type(0)]:
pass
else:
#print 'interval: ', interval
raise ValueError, interval + " is an unknown value for interval: " \
" expects 'auto' or 'linear', or a number"
# If the lower or upper bound are set to 'auto',
# calculate them based on the newly chosen interval.
#print 'interval:', interval
auto_lower,auto_upper = auto_bounds(data_bounds,interval)
if bounds_info[0] == 'auto':
lower = auto_lower
if bounds_info[1] == 'auto':
upper = auto_upper
# again, we shouldn't need this
# cluge to handle inf values
#if isinf(lower):
# lower = nan_to_num(lower) / 10
#if isinf(upper):
# upper = nan_to_num(upper) / 10
#if isinf(interval):
# interval = nan_to_num(interval) / 10
# if the lower and upper bound span 0, make sure ticks
# will hit exactly on zero.
if lower < 0 and upper > 0:
#print 'arrrgh',0,upper+interval,interval
hi_ticks = arange(0,upper+interval,interval)
low_ticks = - arange(interval,-lower+interval,interval)
ticks = concatenate((low_ticks[::-1],hi_ticks))
else:
# othersize the ticks start and end on the lower and
# upper values.
ticks = arange(lower,upper+interval,interval)
#cluge
if len(ticks) < 2:
ticks = array(((lower-lower*1e-7),lower))
#print 'ticks:',ticks
if bounds_info[0] == 'fit': ticks[0] = lower
if bounds_info[1] == 'fit': ticks[-1] = upper
return ticks
def format_tick_labels(ticks):
""" Convert tick values to formatted strings.
Definitely needs some work
"""
return map(str,ticks)
#print ticks
#if equal(ticks,ticks.astype('l')):
# return map(str,ticks.astype('l'))
#else:
# return map(str,ticks)
def calc_bound(end_point,interval,end):
""" Find an axis end point that includes the the value end_point. If the
tick mark interval results in a tick mark hitting directly on the
end_point, end_point is returned. Otherwise, the location of the tick
mark just past the end_point is returned. end is 'lower' or 'upper' to
specify whether end_point is at the lower or upper end of the axis.
"""
quotient,remainder = divmod(end_point,interval)
if not remainder: return end_point
c1 = axis_bound = (quotient + 1) * interval
c2 = axis_bound = (quotient) * interval
if end == 'upper': return max(c1,c2)
if end == 'lower': return min(c1,c2)
def auto_bounds(data_bounds,interval):
""" Calculate an appropriate upper and lower bounds for the axis from
the the data_bounds (lower, upper) and the given axis interval. The
boundaries will either hit exactly on the lower and upper values
or on the tick mark just beyond the lower and upper values.
"""
data_lower,data_upper = data_bounds
lower = calc_bound(data_lower,interval,'lower')
upper = calc_bound(data_upper,interval,'upper')
return array((lower,upper))
def auto_interval(data_bounds):
""" Calculate the tick intervals for a graph axis.
Description:
The boundaries for the data to be plotted on the axis are:
data_bounds = (lower,upper)
A choice is made between 3 to 9 ticks marks (including end points)
and tick intervals at 1, 2, 2.5, 5, 10, 20, ...
Returns:
interval -- float. tick mark interval for axis
"""
range = float(data_bounds[1]) - float(data_bounds[0])
# We'll choose from between 2 and 8 tick marks
# Favortism is given to more ticks:
# Note reverse order and see CLUGE below...
divisions = arange(8,2.,-1.) #(7,6,...,3)
# Calculate the intervals for the divisions
candidate_intervals = range / divisions
# Get magnitudes and mantissas for each candidate
magnitudes = 10.**floor(log10(candidate_intervals))
mantissas = candidate_intervals / magnitudes
# list of "pleasing" intervals between ticks on graph
# only first magnitude listed, higher mags others inferred
magic_intervals = array((1.,2.,2.5,5.,10.))
# calculate the absolute differences between the candidates
# (with mag removed) and the magic intervals
differences = abs(magic_intervals[:,newaxis] - mantissas)
# Find the division and magic interval combo
# that produce the smallest differences.
# also:
# CLUGE: argsort doesn't preserve the order of
# equal values, so we subtract a small , index
# dependent amount from each difference to
# force correct ordering
sh = shape(differences)
small = 2.2e-16 *arange(sh[1]) * arange(sh[0])[:,newaxis]
small = small[::-1,::-1] #reverse order
differences = differences - small
# ? Numeric should allow keyword "axis" ? comment out for now
#best_mantissa = minimum.reduce(differences,axis=0)
#best_magic = minimum.reduce(differences,axis=-1)
best_mantissa = minimum.reduce(differences,0)
best_magic = minimum.reduce(differences,-1)
magic_index = argsort(best_magic)[0]
mantissa_index = argsort(best_mantissa)[0]
# The best interval is the magic_interval
# multiplied by the magnitude of the best mantissa
interval = magic_intervals[magic_index]
magnitude = magnitudes[mantissa_index]
#print differences
#print 'results:', magic_index, mantissa_index,interval, magnitude
#print 'returned:',interval*magnitude
result = interval*magnitude
if result == 0.0:
result = limits.float_epsilon
return result
|