File: Changelog

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (129 lines) | stat: -rw-r--r-- 3,888 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
pyem (0.5.6) Thu, 16 Nov 2006 21:02:02 +0900

	* correct examples
	* correct exceptions msg strings in gauss_mix, which 
	were buggy
	* add examples from website to the package, so that above errors
	do not appear again

pyem (0.5.6) Thu, 16 Nov 2006 14:18:19 +0900

	* bump to 0.5.6
	* Add __str__ and __repr__ for GM and GMM classes
	* Add regularization method (but not used yet).
	* Change 'f<8' to N.float64 for ctype enabled densities
	* Move 'Magic numbers' into a separated python file, misc.py

pyem (0.5.5) Tue, 24 Oct 2006 18:30:54 +0900

	* Fix a bug inmultiple_gaussian_den which prevents 
	full covariance mode to work in GMM.
	* Add consistency tests in tests/test_gmm_em.py to avoid the 
	above bug from being detected from now on.

pyem (0.5.5) Mon, 23 Oct 2006 18:48:15 +0900

	* Bump to 0.5.5
	* Added bic method to GMM.
	* A few fixes for docstrings
	* Added bibliography to the doc

pyem (0.5.4) Fri, 20 Oct 2006 12:52:01 +0900

	* Bump to 0.5.4
	* Online EM is basically implemented, with tests. The API
	should be fixed to be choherent (lacks the Trainer Class, too).
	The class is not imported by default, still (available as _OnGMM)

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.3) Thu, 12 Oct 2006 21:08:21 +0900

	* Change the layout and setup.py for inclusion to scipy.
	* Initial script for online em.

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.3) Tue, 03 Oct 2006 18:28:13 +0900

	* Update tests so that they work within the numpy test framework
	* Update version to 0.5.3

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.2) Tue, 29 Aug 2006 14:53:49 +0900

	* Add a class method to GM to create a model directly from
	w, mean and var values (uses decorator: python 2.4)
	* Add a plot1d method to GM to plot a GM in one dimension (where
	the confidence ell kind of plot does not make sense). This draws
	each Gaussian pdf, fill the area on the confidence interval
	(matplotlib is really cool)

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.2) Mon, 28 Aug 2006 13:20:13 +0900

	* Add a plot method to Gm class, so that it is easier
	to plot a GM model interactively (needs matplotlib)

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.2) Thu, 24 Aug 2006 19:42:28 +0900

	* put version to 0.5.2
	* Correct a bug with init method in GMM (change class method
	to object method).
	* modify the setup for a more flexible system

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5.1) Thu, 17 Aug 2006 11:54:41 +0900

	* put version to 0.5.1
	* Update to last numpy (change axis args between 1.0b1 and 1.0b2,
	change type args of ones and zeros)

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.5) Fri, 04 Aug 2006 23:10:37 +0900

	* put version to 0.5.0
	* implement confidence interval using chi2

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.4) Fri, 04 Aug 2006 19:37:47 +0900

	* put version to 0.4.2
	* adapt to new version of numpy (1.0b2SVN)

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.4) Fri, 14 Jul 2006 17:49:57 +0900

	* put version to 0.4.1
	* change some import due to recent changes in 
	numpy

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.4) Fri, 14 Jul 2006 16:24:05 +0900

	* put version to 0.4
	* Heavy refactoring of EM and GMM into classes (see below)
	* add a module gauss_mix, which implements Gaussian Mixtures.
	* GMM is now a class, which is initialized using a Gaussian Mixture.
	a GMM can be trained.

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp> 

pyem (0.3) Thu, 13 Jul 2006 19:48:54 +0900

	* put version to 0.3
	* Refactoring kmean code into new module. 
	* Refactoring tests code into test module. 
	* Replace matrixmultiply and outerproduct calls by dot to use fast BLAS if
	available. Not everything is done yet

-- David Cournapeau <david@ar.media.kyoto-u.ac.jp>