File: README

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (25 lines) | stat: -rw-r--r-- 1,024 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
Last Change: Fri Aug 04 07:00 PM 2006 J

Version 0.4.2

pyem is a python module build upon numpy and scipy
(see http://www.scipy.org/) for learning mixtures models
using Expectation Maximization. For now, only Gaussian
Mixture Models are implemented. Included features:
    
 * computation of Gaussian pdf for multi-variate Gaussian
 random vectors (spherical, diagonal and full covariance matrices)
 * Sampling of Gaussian Mixtures Models
 * Confidence ellipsoides with probability (fixed level of 
 0.39 for now)
 * Classic EM for Gaussian Mixture Models
 * K-mean based and random initialization for EM available

Has been tested on the following platforms:

 * Ubuntu dapper, bi Xeon 3.2 Ghz, 2 Go RAM
 python 2.4 + pyrex, numpy 1.0.b2SVN + scipy 0.5.1SVN, uses atlas3-sse2
 * Ubuntu dapper, pentium M 1.2 ghz,. 512 Mo Ram
 python 2.4 + pyrex, numpy 1.0.b2SVN + scipy 0.5.1SVN, uses atlas3-sse2
 * Ubuntu dapper, minimac (ppc G4 1.42 Ghz, 1Gb RAM)
 python 2.4 + pyrex, numpy 1.0.b2SVN + scipy 0.5.1SVN, uses atlas3-sse2