1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#! /usr/bin/python
#
# Copyrighted David Cournapeau
# Last Change: Wed Dec 06 09:00 PM 2006 J
# New version, with default numpy ordering.
import numpy as N
import numpy.linalg as lin
from numpy.random import randn
from scipy.stats import chi2
# Error classes
class DenError(Exception):
"""Base class for exceptions in this module.
Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error"""
def __init__(self, message):
self.message = message
def __str__(self):
return self.message
#============
# Public API
#============
# The following function do all the fancy stuff to check that parameters
# are Ok, and call the right implementation if args are OK.
def gauss_den(x, mu, va, log = False, axis = -1):
""" Compute multivariate Gaussian density at points x for
mean mu and variance va along specified axis:
requirements:
* mean must be rank 0 (1d) or rank 1 (multi variate gaussian)
* va must be rank 0 (1d), rank 1(multi variate, diag covariance) or rank 2
(multivariate, full covariance).
* in 1 dimension case, any rank for mean and va is ok, as long as their size
is 1 (eg they contain only 1 element)
Caution: if x is rank 1, it is assumed you have a 1d problem. You cannot compute
the gaussian densities of only one sample of dimension d; for this, you have
to use a rank 2 !
If log is True, than the log density is returned
(useful for underflow ?)"""
# If data is rank 1, then we have 1 dimension problem.
if x.ndim == 1:
d = 1
n = x.size
if not N.size(mu) == 1:
raise DenError("for 1 dimension problem, mean must have only one element")
if not N.size(va) == 1:
raise DenError("for 1 dimension problem, mean must have only one element")
return _scalar_gauss_den(x, mu, va, log)
# If data is rank 2, then we may have 1 dimension or multi-variate problem
elif x.ndim == 2:
oaxis = (axis + 1) % 2
n = x.shape[axis]
d = x.shape[oaxis]
# Get away with 1d case now
if d == 1:
return _scalar_gauss_den(x, mu, va, log)
# Now, d > 1 (numpy attributes should be valid on mean and va now)
if not N.size(mu) == d or not mu.ndim == 1:
raise DenError("data is %d dimension, but mean's shape is %s" \
% (d, N.shape(mu)) + " (should be (%d,))" % d)
isfull = (va.ndim == 2)
if not (N.size(va) == d or (isfull and va.shape[0] == va.shape[1] == d)):
raise DenError("va has an invalid shape or number of elements")
if isfull:
# Compute along rows
if oaxis == 0:
return _full_gauss_den(x, mu[:, N.newaxis], va, log, axis)
else:
return _full_gauss_den(x, mu, va, log, axis)
else:
return _diag_gauss_den(x, mu, va, log, axis)
else:
raise RuntimeError("Sorry, only rank up to 2 supported")
# To plot a confidence ellipse from multi-variate gaussian pdf
def gauss_ell(mu, va, dim = [0, 1], npoints = 100, level = 0.39):
""" Given a mean and covariance for multi-variate
gaussian, returns npoints points for the ellipse
of confidence given by level (all points will be inside
the ellipsoides with a probability equal to level)
Returns the coordinate x and y of the ellipse"""
c = N.array(dim)
if mu.size < 2:
raise RuntimeError("this function only make sense for dimension 2 and more")
if mu.size == va.size:
mode = 'diag'
else:
if va.ndim == 2:
if va.shape[0] == va.shape[1]:
mode = 'full'
else:
raise DenError("variance not square")
else:
raise DenError("mean and variance are not dim conformant")
# If X ~ N(mu, va), then [X` * va^(-1/2) * X] ~ Chi2
chi22d = chi2(2)
mahal = N.sqrt(chi22d.ppf(level))
# Generates a circle of npoints
theta = N.linspace(0, 2 * N.pi, npoints)
circle = mahal * N.array([N.cos(theta), N.sin(theta)])
# Get the dimension which we are interested in:
mu = mu[dim]
if mode == 'diag':
va = va[dim]
elps = N.outer(mu, N.ones(npoints))
elps += N.dot(N.diag(N.sqrt(va)), circle)
elif mode == 'full':
va = va[c,:][:,c]
# Method: compute the cholesky decomp of each cov matrix, that is
# compute cova such as va = cova * cova'
# WARN: scipy is different than matlab here, as scipy computes a lower
# triangular cholesky decomp:
# - va = cova * cova' (scipy)
# - va = cova' * cova (matlab)
# So take care when comparing results with matlab !
cova = lin.cholesky(va)
elps = N.outer(mu, N.ones(npoints))
elps += N.dot(cova, circle)
else:
raise DenParam("var mode not recognized")
return elps[0, :], elps[1, :]
#=============
# Private Api
#=============
# Those 3 functions do almost all the actual computation
def _scalar_gauss_den(x, mu, va, log):
""" This function is the actual implementation
of gaussian pdf in scalar case. It assumes all args
are conformant, so it should not be used directly
Call gauss_den instead"""
inva = 1/va
fac = (2*N.pi) ** (-1/2.0) * N.sqrt(inva)
y = ((x-mu) ** 2) * -0.5 * inva
if not log:
y = fac * N.exp(y.ravel())
else:
y = y + log(fac)
return y
def _diag_gauss_den(x, mu, va, log, axis):
""" This function is the actual implementation
of gaussian pdf in scalar case. It assumes all args
are conformant, so it should not be used directly
Call gauss_den instead"""
# Diagonal matrix case
d = mu.size
if axis % 2 == 0:
x = N.swapaxes(x, 0, 1)
if not log:
inva = 1/va[0]
fac = (2*N.pi) ** (-d/2.0) * N.sqrt(inva)
y = (x[0] - mu[0]) ** 2 * inva * -0.5
for i in range(1, d):
inva = 1/va[i]
fac *= N.sqrt(inva)
y += (x[i] - mu[i]) ** 2 * inva * -0.5
y = fac * N.exp(y)
else:
y = _scalar_gauss_den(x[0], mu[0], va[0], log)
for i in range(1, d):
y += _scalar_gauss_den(x[i], mu[i], va[i], log)
return y
def _full_gauss_den(x, mu, va, log, axis):
""" This function is the actual implementation
of gaussian pdf in full matrix case.
It assumes all args are conformant, so it should
not be used directly Call gauss_den instead
Does not check if va is definite positive (on inversible
for that matter), so the inverse computation and/or determinant
would throw an exception."""
d = mu.size
inva = lin.inv(va)
fac = 1 / N.sqrt( (2*N.pi) ** d * N.fabs(lin.det(va)))
# # Slow version (does not work since version 0.6)
# n = N.size(x, 0)
# y = N.zeros(n)
# for i in range(n):
# y[i] = N.dot(x[i,:],
# N.dot(inva, N.transpose(x[i,:])))
# y *= -0.5
# we are using a trick with sum to "emulate"
# the matrix multiplication inva * x without any explicit loop
if axis % 2 == 1:
y = N.dot(inva, (x-mu))
y = -0.5 * N.sum(y * (x-mu), 0)
else:
y = N.dot((x-mu), inva)
y = -0.5 * N.sum(y * (x-mu), 1)
if not log:
y = fac * N.exp(y)
else:
y = y + N.log(fac)
return y
if __name__ == "__main__":
import pylab
#=========================================
# Test plotting a simple diag 2d variance:
#=========================================
va = N.array([5, 3])
mu = N.array([2, 3])
# Generate a multivariate gaussian of mean mu and covariance va
X = randn(2, 1e3)
Yc = N.dot(N.diag(N.sqrt(va)), X)
Yc = Yc.transpose() + mu
# Plotting
Xe, Ye = gauss_ell(mu, va, npoints = 100)
pylab.figure()
pylab.plot(Yc[:, 0], Yc[:, 1], '.')
pylab.plot(Xe, Ye, 'r')
#=========================================
# Test plotting a simple full 2d variance:
#=========================================
va = N.array([[0.2, 0.1],[0.1, 0.5]])
mu = N.array([0, 3])
# Generate a multivariate gaussian of mean mu and covariance va
X = randn(1e3, 2)
Yc = N.dot(lin.cholesky(va), X.transpose())
Yc = Yc.transpose() + mu
# Plotting
Xe, Ye = gauss_ell(mu, va, npoints = 100, level=0.95)
pylab.figure()
pylab.plot(Yc[:, 0], Yc[:, 1], '.')
pylab.plot(Xe, Ye, 'r')
pylab.show()
|