File: test_densities.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (193 lines) | stat: -rw-r--r-- 5,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#! /usr/bin/env python
# Last Change: Thu Nov 09 05:00 PM 2006 J

# TODO:
#   - having "fake tests" to check that all mode (scalar, diag and full) are
#   executables
#   - having a dataset to check against

import sys
from numpy.testing import *

import numpy as N

set_package_path()
from pyem.densities import gauss_den
restore_path()

#Optional:
set_local_path()
# import modules that are located in the same directory as this file.
restore_path()

DEF_DEC = 12

class TestDensities(NumpyTestCase):
    def _generate_test_data_1d(self):
        self.va     = 2.0
        self.mu     = 1.0
        self.X      = N.linspace(-2, 2, 10)[:, N.newaxis]

        self.Yt     = N.array([0.02973257230591, 0.05512079811082, 0.09257745306945, 
                0.14086453882683,
                0.19418015562214, 0.24250166773127, 0.27436665745048, 0.28122547107069,
                0.26114678964743, 0.21969564473386])

    def _generate_test_data_2d_diag(self):
        #============================
        # Small test in 2d (diagonal)
        #============================
        self.mu  = N.atleast_2d([-1.0, 2.0])
        self.va  = N.atleast_2d([2.0, 3.0])
        
        self.X  = N.zeros((10, 2))
        self.X[:,0] = N.linspace(-2, 2, 10)
        self.X[:,1] = N.linspace(-1, 3, 10)

        self.Yt  = N.array([0.01129091565384, 0.02025416837152, 0.03081845516786, 
                0.03977576221540, 0.04354490552910, 0.04043592581117, 
                0.03184994053539, 0.02127948225225, 0.01205937178755, 
                0.00579694938623 ])


    def _generate_test_data_2d_full(self):
        #============================
        # Small test in 2d (full mat)
        #============================
        self.mu = N.array([[0.2, -1.0]])
        self.va = N.array([[1.2, 0.1], [0.1, 0.5]])
        X1      = N.linspace(-2, 2, 10)[:, N.newaxis]
        X2      = N.linspace(-3, 3, 10)[:, N.newaxis]
        self.X  = N.concatenate(([X1, X2]), 1)
        
        self.Yt = N.array([0.00096157109751, 0.01368908714856,
            0.07380823191162, 0.15072050533842, 
            0.11656739937861, 0.03414436965525,
            0.00378789836599, 0.00015915297541, 
            0.00000253261067, 0.00000001526368])

class test_py_implementation(TestDensities):
    def _check(self, level, decimal = DEF_DEC):
        Y   = gauss_den(self.X, self.mu, self.va)
        assert_array_almost_equal(Y, self.Yt, decimal)

    def check_2d_diag(self, level = 0):
        self._generate_test_data_2d_diag()
        self._check(level)

    def check_2d_full(self, level = 0):
        self._generate_test_data_2d_full()
        self._check(level)
    
    def check_py_1d(self, level = 0):
        self._generate_test_data_1d()
        self._check(level)

class test_c_implementation(TestDensities):
    def _check(self, level, decimal = DEF_DEC):
        try:
            from pyem._c_densities import gauss_den as c_gauss_den
            Y   = c_gauss_den(self.X, self.mu, self.va)
            assert_array_almost_equal(Y, self.Yt, decimal)
        except ImportError, inst:
            print "Error while importing C implementation, not tested"
            print " -> (Import error was %s)" % inst 

    def check_1d(self, level = 0):
        self._generate_test_data_1d()
        self._check(level)

    def check_2d_diag(self, level = 0):
        self._generate_test_data_2d_diag()
        self._check(level)

    def check_2d_full(self, level = 0):
        self._generate_test_data_2d_full()
        self._check(level)

if __name__ == "__main__":
    NumpyTest().run()

# def generate_test_data(n, d, mode = 'diag', file='test.dat'):
#     """Generate a set of data of dimension d, with n frames,
#     that is input data, mean, var and output of gden, so that
#     other implementations can be tested against"""
#     mu  = randn(1, d)
#     if mode == 'diag':
#         va  = abs(randn(1, d))
#     elif mode == 'full':
#         va  = randn(d, d)
#         va  = dot(va, va.transpose())
# 
#     input   = randn(n, d)
#     output  = gauss_den(input, mu, va)
# 
#     import tables
#     h5file  = tables.openFile(file, "w")
# 
#     h5file.createArray(h5file.root, 'input', input)
#     h5file.createArray(h5file.root, 'mu', mu)
#     h5file.createArray(h5file.root, 'va', va)
#     h5file.createArray(h5file.root, 'output', output)
# 
#     h5file.close()
# 
# def test_gauss_den():
#     """"""
#     # import tables
#     # import numpy as N
#     # 
#     # filename    = 'dendata.h5'
# 
#     # # # Dimension 1
#     # # d   = 1
#     # # mu  = 1.0
#     # # va  = 2.0
# 
#     # # X   = randn(1e3, 1)
# 
#     # # Y   = gauss_den(X, mu, va)
# 
#     # # h5file      = tables.openFile(filename, "w")
# 
#     # # h5file.createArray(h5file.root, 'X', X)
#     # # h5file.createArray(h5file.root, 'mu', mu)
#     # # h5file.createArray(h5file.root, 'va', va)
#     # # h5file.createArray(h5file.root, 'Y', Y)
# 
#     # # h5file.close()
# 
#     # # # Dimension 2, diag
#     # # d   = 2
#     # # mu  = N.array([1.0, -2.0])
#     # # va  = N.array([1.0, 2.0])
# 
#     # # X   = randn(1e3, 2)
# 
#     # # Y   = gauss_den(X, mu, va)
# 
#     # # h5file      = tables.openFile(filename, "w")
# 
#     # # h5file.createArray(h5file.root, 'X', X)
#     # # h5file.createArray(h5file.root, 'mu', mu)
#     # # h5file.createArray(h5file.root, 'va', va)
#     # # h5file.createArray(h5file.root, 'Y', Y)
# 
#     # # Dimension 2, full
#     # d   = 2
#     # mu  = N.array([[0.2, -1.0]])
#     # va  = N.array([[1.2, 0.1], [0.1, 0.5]])
# 
#     # X   = randn(1e3, 2)
# 
#     # Y   = gauss_den(X, mu, va)
# 
#     # h5file      = tables.openFile(filename, "w")
# 
#     # h5file.createArray(h5file.root, 'X', X)
#     # h5file.createArray(h5file.root, 'mu', mu)
#     # h5file.createArray(h5file.root, 'va', va)
#     # h5file.createArray(h5file.root, 'Y', Y)
# 
#     # h5file.close()
#