File: spmatrix_manual.tex

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (1117 lines) | stat: -rw-r--r-- 44,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
\documentclass[a4paper]{article}

\usepackage[]{subfigure}
\usepackage{url}
\usepackage{alltt}
\usepackage{amsfonts} 
\usepackage{amsmath} 
\usepackage{amssymb}
\usepackage{dcolumn}
\newcolumntype{.}{D{.}{.}{-1}}  % column is centered at '.'
\newcolumntype{d}[1]{D{.}{.}{#1}} % right aligned
\usepackage{times}

\newcommand{\kmax}{\ensuremath{k_{\text{max}}}}
\newcommand{\jmin}{\ensuremath{j_{\text{min}}}}
\newcommand{\jmax}{\ensuremath{j_{\text{max}}}}
\newcommand{\epstr}{\ensuremath{\varepsilon_{\text{tr}}}}
\newcommand{\epsjd}{\ensuremath{\varepsilon}}
\newcommand{\epslin}{\ensuremath{\varepsilon_{\text{lin}}}}
\newcommand{\itmax}{\ensuremath{\mathit{it}_{\text{max}}}}
\newcommand{\itmaxlin}{\ensuremath{\mathit{it}_{\text{max,lin}}}}
\newcommand{\istep}{\ensuremath{i_\text{step}}}
\newcommand{\nofit}{\ensuremath{\mathit{it}}}
\newcommand{\mat}[1]{\ensuremath{\boldsymbol{#1}}}
\newcommand{\vect}[1]{\ensuremath{\mathbf{#1}}}
\newlength{\pyindent} \newlength{\pyminipagewidth}
\setlength{\pyindent}{1.0\parindent}
\setlength{\pyminipagewidth}{\textwidth}\addtolength{\pyminipagewidth}{-\pyindent}
\newenvironment{pycode}{\begin{trivlist}\item\hspace*{\pyindent}\begin{minipage}{\pyminipagewidth}\small\begin{alltt}}
      {\end{alltt}\end{minipage}\end{trivlist}}
\newenvironment{pyinline}{\begin{trivlist}\item\hspace*{\pyindent}\begin{minipage}{\pyminipagewidth}\small\begin{alltt}}
      {\end{alltt}\end{minipage}\end{trivlist}}
\newenvironment{arglist} {\begin{list}{}{\setlength{\leftmargin}{4em}\setlength{\itemsep}{0cm}\setlength{\labelwidth}{3em}}}
  {\end{list}}
\renewcommand{\subfigcapskip}{0pt}
\renewcommand{\subfigbottomskip}{0pt}

\title{PySparse - A sparse linear algebra extension for Python} 
\author{Roman Geus} 

\begin{document}
\maketitle

This document is a portion of a draft of my PhD thesis. Unfortunately
the document contains unresolved references to other parts of my
thesis, which are printed as double question marks. Nevertheless the
document could be useful as a reference for the PySparse package.

\subsection{The PySparse package}
\label{sec:python:pysparse}
%
The PySparse package extends the Python interpreter by a set of sparse
matrix types. PySparse also includes modules that implement
\begin{itemize}
\item iterative methods for solving linear systems of equations,
\item a set of standard preconditioners,
\item an interface to a direct solver for sparse linear systems of
  equations,
\item and the JDSYM eigensolver.
\end{itemize}
%
All these modules are implemented as C extension modules for maximum
performance. In the following sections all modules of PySparse are
described in detail.

%------------------------------------------------------------------------
\subsubsection{The spmatrix module}
\label{sec:python:spmatrix}
%
The \textit{spmatrix} module is the foundation of the PySparse
package. It extends the Python interpreter by three new types named
\textit{ll\_mat}, \textit{csr\_mat} and \textit{sss\_mat}. These types
represent sparse matrices in the LL-, the CSR- and SSS-formats
respectively (cf.\ Appendix \ref{sec:spformat}). For all three
formats, double precision values (C type \texttt{double}) are used to
represent the non-zero entries.

The common way to use the \textit{spmatrix} module is to first build a
matrix in the LL-format. The LL-matrix is manipulated until it has its
final shape and content. Afterwards it may be converted to either the
CSR- or SSS-format, which needs less memory and allows for fast
matrix-vector multiplications.

A \textit{ll\_mat} object can be created from scratch, by reading data
from a file (in MatrixMarket format) or as a result of matrix
operation (as e.g.\ a matrix-matrix multiplication). The
\textit{ll\_mat} object supports manipulating (reading, writing,
add-updating) single entries or sub-matrices.

\textit{csr\_mat} and \textit{sss\_mat} are not constructed directly,
instead they are created by converting \textit{ll\_mat} objects. Once
created, \textit{csr\_mat} and \textit{sss\_mat} objects cannot be
manipulated. Their purpose is to support efficient matrix-vector
multiplications.

%------------------------------------------------------------------------
\paragraph{spmatrix module functions}

\subparagraph{ll\_mat(n, m, sizeHint=1000)} 
%
Creates a \textit{ll\_mat} object, that represents a general, all zero
$m\times n$ matrix. The optional \textit{sizeHint} parameter specifies
the number of non-zero entries for which space is allocated initially.

If the total number of non-zero elements of the final matrix is known
(approximately), this number can be passed as \textit{sizeHint}. This
will avoid costly memory reallocations.

\subparagraph{ll\_mat\_sym(n, sizeHint=1000)} 
%
Creates a \textit{ll\_mat} object, that represents a \emph{symmetric},
all zero $n\times n$ matrix. The optional \textit{sizeHint} parameter
specifies, how much space is initially allocated for the matrix.

\subparagraph{ll\_mat\_from\_mtx(fileName)} 
%
Creates a \textit{ll\_mat} object from a file named \textit{fileName},
which must be in MatrixMarket Coordinate format as described at
\url{http://math.nist.gov/MatrixMarket/formats.html}. Depending on the
file content, either a symmetric or a general sparse matrix is
generated.

\subparagraph{matrixmultiply(A, B)}
%
computes the matrix-matrix multiplication 
\begin{equation*}
  \mat{C} := \mat{A}\mat{B}
\end{equation*}
and returns the result $\mat{C}$ as a new \textit{ll\_mat} object
representing a general sparse matrix. The parameters $\mat{A}$ and
$\mat{B}$ are expected to be objects of type \textit{ll\_mat}.

\subparagraph{dot(A, B)}
%
computes the ``dot-product''
\begin{equation*}
  \mat{C} := \mat{A}^T\mat{B}
\end{equation*}
and returns the result $\mat{C}$ as a new \textit{ll\_mat} object
representing a general sparse matrix. The parameters $\mat{A}$ and
$\mat{B}$ are expected to be objects of type \textit{ll\_mat}.

%------------------------------------------------------------------------
\paragraph{ll\_mat objects}
%
\textit{ll\_mat} objects represent matrices stored in the LL format,
which are described in Appendix~\ref{sec:spformat:ll}.
\textit{ll\_mat} objects come in two flavours: general matrices and
symmetric matrices.  For symmetric matrices only the non-zero entries
in the lower triangle are stored.  Write operations to the strictly
upper triangle are prohibited for the symmetric format.  The
\texttt{issym} attribute of an \textit{ll\_mat} object can be queried
to find out whether or not the symmetric storage format is used.

The entries of a matrix can be accessed conveniently using
two-dimensional array indices\footnote{The standard Python language
  does not know multidimensional indices.  However, thanks to Python's
  clever design, its easy to provide multidimensional indices for
  extension types, without any dirty hacks.
  
  In the Python language, subscripts can be of any type (as it is
  customary for dictionaries). A two-dimensional index can be regarded
  as a 2-tuple (the brackets do not have to be written, so
  \texttt{A[1,2]} is the same as \texttt{A[(1,2)]}). If both tuple
  elements are integers, then a single matrix element is referenced.
  If at least one of the tuple elements is a slice (which is also a
  Python object), then a submatrix is referenced.

Subscripts have to be decoded at runtime. This task includes type
checks, extraction of indices from the 2-tuple, parsing of slice
objects and index bound checks. }.  Following Python conventions,
indices start with 0 and wrap around (so -1 is equivalent to the last
index).

The following code creates an empty 5$\times$5 matrix \texttt{A}, sets
all diagonal elements to their respective row/column index and then
copies the value of \texttt{A[0,0]} to \texttt{A[2,1]}.
\begin{pyinline}
>>> import spmatrix
>>> A = spmatrix.ll_mat(5, 5)
>>> for i in range(5):
...     A[i,i] = i+1
>>> A[2,1] = A[0,0]
>>> print A
ll_mat(general, [5,5], [(0,0): 1, (1,1): 2, (2,1): 1,
(2,2): 3, (3,3): 4, (4,4): 5])
\end{pyinline}

\noindent The Python slice notation can be used to conveniently access
sub-matrices.
\begin{pyinline}
>>> print A[:2,:]     # the first two rows
ll_mat(general, [2,5], [(0,0): 1, (1,1): 2])
>>> print A[:,2:5]    # columns 2 to 4
ll_mat(general, [5,3], [(2,0): 3, (3,1): 4, (4,2): 5])
>>> print A[1:3,2:5]  # submatrix 
                      # starting at row 1 col 2,
                      # ending at row 2 col 4
ll_mat(general, [2,3], [(1,0): 3])
\end{pyinline}
The slice operator always returns a new \textit{ll\_mat} object,
containing a copy of the selected submatrix.

Write operations to slices are also possible:
\begin{pyinline}
>>> B = ll_mat(2, 2)           # create 2-by-2
>>> B[0,0] = -1; B[1,1] = -1   # diagonal matrix
>>> A[:2,:2] = B               # assign it to upper
>>>                            # diagonal block of A
>>> print A
ll_mat(general, [5,5], [(0,0): -1, (1,1): -1, (2,1): 1, 
(2,2): 3, (3,3): 4, (4,4): 5])
\end{pyinline}

%------------------------------------------------------------------------
\paragraph{ll\_mat object attributes}
%

\subparagraph{A.shape}
%
Returns a 2-tuple containing the shape of the matrix $\mat{A}$, i.e.\ 
the number of rows and columns.

\subparagraph{A.nnz}
%
Returns the number of non-zero entries stored in matrix $\mat{A}$. If
$\mat{A}$ is stored in the symmetric format, only the number of
non-zero entries in the lower triangle (including the diagonal) are
returned.

\subparagraph{A.issym}
%
Returns true (a non-zero integer) if matrix $\mat{A}$ is stored in the
symmetric LL format, i.e. only the non-zero entries in the lower
triangle are stored. Returns false (zero) if matrix $\mat{A}$ is
stored in the general LL format.

\paragraph{ll\_mat object methods}
%

\subparagraph{A.to\_csr()}
%
Returns a newly allocated \textit{csr\_mat} object, which results from
converting matrix $\mat{A}$.

\subparagraph{A.to\_sss()}
%
Returns a newly allocated \textit{sss\_mat} object, which results from
converting matrix $\mat{A}$. This function works for \textit{ll\_mat}
objects in both the symmetric and the general format. If $\mat{A}$ is
stored in the general format, only the entries in the lower triangle
are used for the conversion. No check, whether $\mat{A}$ is symmetric,
is performed.

\subparagraph{A.export\_mtx(fileName, precision=6)}
%
Exports the matrix $\mat{A}$ to file named \textit{fileName}. The
matrix is stored in MatrixMarket Coordinate format as described at
\url{http://math.nist.gov/MatrixMarket/formats.html}. Depending on the
properties of \textit{ll\_mat} object $\mat{A}$ the generated file
either uses the symmetric or a general MatrixMarket Coordinate format.
The optional parameter \textit{precision} specifies the number of
decimal digits that are used to express the non-zero entries in the
output file.

\subparagraph{A.shift(sigma, M)}
%
Performs a daxpy-like operation on matrix $\mat{A}$,
\begin{equation*}
  \mat{A} \leftarrow \mat{A} + \sigma \mat{M}.  
\end{equation*}
The parameter $\sigma$ is expected to be a Python Float object. The
parameter $\mat{M}$ is expected to an object of type \textit{ll\_mat}.

\subparagraph{A.copy()}
%
Returns a new \textit{ll\_mat} object, that represents a copy of the
\textit{ll\_mat} object $\mat{A}$. So,
\begin{pyinline}
>>> B = A.copy()
\end{pyinline}
is equivalent to
\begin{pyinline}
>>> B = A[:,:]
\end{pyinline}
On the other hand
\begin{pyinline}
>>> B = A.copy()
\end{pyinline}
is \emph{not} the same as
\begin{pyinline}
>>> B = A
\end{pyinline}
The latter version only returns a reference to the same object and
assigns it to \texttt{B}. Subsequent changes to \texttt{A} will
therefore also be visible in \texttt{B}.

\subparagraph{A.update\_add\_mask(B, ind0, ind1, mask0, mask1)}
%
This method is provided for efficiently assembling global finite
element matrices. The method adds the matrix $\mat{B}$ to entries of
matrix $\mat{A}$. The indices of the entries to be updated are
specified by \textit{ind0} and \textit{ind1}. The individual updates
are enabled or disabled using the \textit{mask0} and \textit{mask1}
arrays.

The operation is equivalent to the following Python code:
\begin{pyinline}
for i in range(len(ind0)):
    for j in range(len(ind1)):
        if mask0[i] and mask1[j]:
            A[ind0[i],ind1[j]] += B[i,j]
\end{pyinline}
%
All five parameters are NumPy arrays. $\mat{B}$ is an array of rank
two. The four remaining parameters are rank-1 arrays. Their length
corresponds to either the number of rows or the number of columns of
$\mat{B}$.

This method is not supported for \textit{ll\_mat} objects of symmetric
type, since it would generally result in an non-symmetric matrix.
\textit{update\_add\_mask\_sym} must be used in that case.  Attempting
to call this method using a \textit{ll\_mat} object of symmetric type
will raise an exception.

\subparagraph{A.update\_add\_mask\_sym(B, ind, mask)}
%
This method is provided for efficiently assembling symmetric global
finite element matrices. The method adds the matrix $\mat{B}$ to
entries of matrix $\mat{A}$. The indices of the entries to be updated
are specified by \textit{ind}. The individual updates are enabled or
disabled using the \textit{mask} array.

The operation is equivalent to the following Python code:
\begin{pyinline}
for i in range(len(ind)):
    for j in range(len(ind)):
        if mask[i]:
            A[ind[i],ind[j]] += B[i,j]
\end{pyinline}
%
The three parameters are all NumPy arrays. $\mat{B}$ is an array of
rank two representing a square matrix. The four remaining parameters
are rank-1 arrays. Their length corresponds to the order of matrix
$\mat{B}$.

%------------------------------------------------------------------------
\paragraph{csr\_mat and sss\_mat objects}
%
\textit{csr\_mat} objects represent matrices stored in the CSR format,
which are described in Appendix~\ref{sec:spformat:csr}.
\textit{sss\_mat} objects represent matrices stored in the SSS format
(c.f.\ Appendix~\ref{sec:spformat:sss}).  The only way to create a
\textit{csr\_mat} or a \textit{sss\_mat} object is by conversion of a
\textit{ll\_mat} object using the \textit{to\_csr()} or the
\textit{to\_sss()} method respectively. The purpose of the
\textit{csr\_mat} and the \textit{to\_sss()} objects is to provide
fast matrix-vector multiplications for sparse matrices. In addition, a
matrix stored in the CSR or SSS format uses less memory than the same
matrix stored in the LL format, since the \textit{link} array is not
needed.

\textit{csr\_mat} and \textit{sss\_mat} objects do not support
two-dimensional indices to access matrix entries or sub-matrices.
Again, their purpose is to provide fast matrix-vector multiplication.

%------------------------------------------------------------------------
\paragraph{csr\_mat and sss\_mat object attributes}

\subparagraph{A.shape}
%
Returns a 2-tuple containing the shape of the matrix $\mat{A}$, i.e.\ 
the number of rows and columns.

\subparagraph{A.nnz}
%
Returns the number of non-zero entries stored in matrix $\mat{A}$. If
$\mat{A}$ is an \textit{sss\_mat} object, the non-zero entries in the
strictly upper triangle are not counted.

%------------------------------------------------------------------------
\paragraph{csr\_mat and sss\_mat object methods}

\subparagraph{A.matvec(x, y)}
%
Computes the sparse matrix-vector product 
\begin{equation*}
  \vect{y} \leftarrow \mat{A} \vect{x}.
\end{equation*}
$\vect{x}$ and $\vect{y}$ are two double precision, rank-1 NumPy arrays
of appropriate size.

\subparagraph{A.matvec\_transp(x, y)} 
%
Computes the transposed sparse matrix-vector product
\begin{equation*}
  \vect{y} \leftarrow \mat{A}^T \vect{x}.
\end{equation*}
$\vect{x}$ and $\vect{y}$ are two double precision, rank-1 NumPy arrays
of appropriate size. For \textit{sss\_mat} objects
\textit{matvec\_transp} is equivalent to \textit{matvec}.

%------------------------------------------------------------------------
\paragraph{Example: 2D-Poisson matrix}
%
This section illustrates the use of the \textit{spmatrix} module to
build the well known 2D-Poisson matrix resulting from a $n \times n$
square grid.
\begin{pycode}
def poisson2d(n):
    L = spmatrix.ll_mat(n*n, n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if i < n-1:
                L[k,k+1] = -1
            if j > 0:
                L[k,k-n] = -1
            if j < n-1:
                L[k,k+n] = -1
    return L
\end{pycode} 
Using the symmetric variant of the \textit{ll\_mat} object, this gets
even shorter.
\begin{pycode}
def poisson2d_sym(n):
    L = spmatrix.ll_mat_sym(n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if j > 0:
                L[k,k-n] = -1
    return L
\end{pycode}
To illustrate the use of the slice notation to address sub-matrices,
let's build the 2D Poisson matrix using the diagonal and off-diagonal
blocks.
\begin{pycode}
def poisson2d_sym_blk(n):
    L = spmatrix.ll_mat_sym(n*n)
    I = spmatrix.ll_mat_sym(n)
    P = spmatrix.ll_mat_sym(n)
    for i in range(n):
        I[i,i] = -1
    for i in range(n):
        P[i,i] = 4
        if i > 0: P[i,i-1] = -1
    for i in range(0, n*n, n):
        L[i:i+n,i:i+n] = P
        if i > 0: L[i:i+n,i-n:i] = I
    return L
\end{pycode}

%------------------------------------------------------------------------
\subparagraph{Performance comparison with Matlab}
%
Let's compare the performance of three python codes above with the
following Matlab functions:

The Matlab function \texttt{poisson2d} is equivalent to the Python
function with the same name
\begin{pycode}
function L = poisson2d(n)
  L = sparse(n*n);
  for i = 1:n
    for j = 1:n
      k = i + n*(j-1);
      L(k,k) = 4;
      if i > 1, L(k,k-1) = -1; end
      if i < n, L(k,k+1) = -1; end
      if j > 1, L(k,k-n) = -1; end
      if j < n, L(k,k+n) = -1; end
    end
  end
\end{pycode}
\begin{sloppypar}
  The function \texttt{poisson2d\_blk} is an adaption of the Python
  function \texttt{poisson2d\_sym\_blk} (except for exploiting the
  symmetry, which is not directly supported in Matlab).
\end{sloppypar}
\begin{pycode}
function L = poisson2d_blk(n)
  e = ones(n,1);
  P = spdiags([-e 4*e -e], [-1 0 1], n, n);
  I = -speye(n);
  L = sparse(n*n);
  for i = 1:n:n*n
    L(i:i+n-1,i:i+n-1) = P;
    if i > 1, L(i:i+n-1,i-n:i-1) = I; end
    if i < n*n - n, L(i:i+n-1,i+n:i+2*n-1) = I; end
  end
\end{pycode}
\noindent The function \texttt{poisson2d\_kron} demonstrates one of the most efficient 
ways to generate the 2D Poisson matrix in Matlab.
\begin{pycode}
function L = poisson2d_kron(n)
  e = ones(n,1);
  P = spdiags([-e 2*e -e], [-1 0 1], n, n);
  L = kron(P, speye(n)) + kron(speye(n), P);
\end{pycode}

\begin{table}
  \small
  \begin{center}
    \begin{tabular}{|l|*{4}{d{2}|}}
      \hline
      \multicolumn{1}{|c|}{Function} &
      \multicolumn{1}{c|}{$n=100$} &
      \multicolumn{1}{c|}{$n=300$} &
      \multicolumn{1}{c|}{$n=500$} &
      \multicolumn{1}{c|}{$n=1000$} \\
      \hline
      Python \texttt{poisson2d}           &  0.44 &    4.11 &    11.34 & 45.50 \\
      Python \texttt{poisson2d\_sym}      &  0.26 &    2.34 &     6.55 & 26.33 \\
      Python \texttt{poisson2d\_sym\_blk} &  0.03 &    0.21 &     0.62 &  2.22 \\
      Matlab \texttt{poisson2d}           & 28.19 & 3464.9  & 38859    & \multicolumn{1}{c|}{$\infty$} \\
      Matlab \texttt{poisson2d\_blk}      &  6.85 &  309.20 &1912.1  & \multicolumn{1}{c|}{$\infty$} \\
      Matlab \texttt{poisson2d\_kron}     &  0.21 &    2.05 &   6.23 & 29.96 \\
      \hline
    \end{tabular}
    \caption[Performance comparison of Python and Matlab functions to generate the 2D Poisson matrix]{Performance comparison of Python and Matlab functions to generate the 2D Poisson matrix \\ \small The execution times are given in seconds. Matlab version 6.0 Release 12 was used for these timings.}
    \label{tab:python:spmatrix_matpy}
  \end{center}
\end{table}

The execution times reported in Tab.~\ref{tab:python:spmatrix_matpy}
clearly show, that the Python implementation is superior to the Matlab
implementation. If the fastest versions are compared for both
languages, Python is approximately 10 times faster. Comparing the
straight forward \texttt{poisson2d} versions, one is struck by the
result that, the Matlab function is incredibly slow. The Python
version is more then three orders of magnitude faster! This result
really raises the doubt, whether Matlab's sparse matrix format is
appropriately chosen.

\begin{sloppypar}
  The performance difference between Python's \texttt{poisson2d\_sym}
  and \texttt{poisson2d\_sym\_blk} indicates, that a lot of time is
  spent parsing indices.
\end{sloppypar}

%------------------------------------------------------------------------
\subsubsection{The precon module}
\label{sec:python:precon}
%
The \textit{precon} module provides preconditioners, which can be used
e.g.\ for the iterative methods implemented in the in the
\textit{itsolvers} module or the JDSYM eigensolver (in the
\textit{jdsym} module).

In the PySparse framework, any Python object that has the following
properties can be used as a preconditioner:
\begin{itemize}
\item a \textit{shape} attribute, which returns a 2-tuple describing
  the dimension of the preconditioner,
\item and a \textit{precon} method, that accepts two vectors
  $\vect{x}$ and $\vect{y}$, and applies the preconditioner to
  $\vect{x}$ and stores the result in $\vect{y}$. Both $\vect{x}$ and
  $\vect{y}$ are double precision, rank-1 NumPy arrays of appropriate
  size.
\end{itemize}

The \textit{precon} module implements two new object types
\textit{jacobi} and \textit{ssor}, representing Jacobi and the SSOR
preconditioners as described in Sections~\ref{sec:precon:jacobi}
and~\ref{sec:precon:ssor}.

%------------------------------------------------------------------------
\paragraph{precon module functions}
%

\subparagraph{jacobi(A, omega=1.0, steps=1)}
%
Creates a \textit{jacobi} object, representing the Jacobi
preconditioner. The parameter $\mat{A}$ is the system matrix used for
the Jacobi iteration. The matrix needs to be subscriptable using
two-dimensional indices, so e.g.\ an \textit{ll\_mat} object would
work.  The optional parameter $\omega$, which defaults to $1.0$, is
the weight parameter as described in Section~\ref{sec:precon:jacobi}.
The optional \textit{steps} parameter (defaults to $1$) specifies the
number of iteration steps.

\subparagraph{ssor(A, omega=1.0, steps=1)}
%
Creates a \textit{ssor} object, representing the SSOR preconditioner.
The parameter $\mat{A}$ is the system matrix used for the SSOR
iteration.  The matrix $\mat{A}$ has to be an object of type
\textit{sss\_mat}.  The optional parameter $\omega$, which defaults to
$1.0$, is the relaxation parameter as described in
Section~\ref{sec:precon:jacobi}. The optional \textit{steps} parameter
(defaults to $1$) specifies the number of iteration steps.

%------------------------------------------------------------------------
\paragraph{jacobi and ssor objects}
%
Both \textit{jacobi} and \textit{ssor} objects provide the
\textit{shape} attribute and the \textit{precon} method, that every
preconditioner object in the PySparse framework must implement.  Apart
from that, there is nothing noteworthy to say about these objects.

%------------------------------------------------------------------------
\paragraph{Example: diagonal preconditioner}
%
The diagonal preconditioner is just a special case of the Jacobi
preconditioner, with $\omega=1.0$ and $\text{steps}=1$, which happen
to be the default values of these parameters.

It is however easy to implement the diagonal preconditioner using a
Python class:
\begin{pycode}
class diag_prec:
    def __init__(self, A):
        self.shape = A.shape
        n = self.shape[0]
        self.dinv = Numeric.zeros(n, 'd')
        for i in xrange(n):
            self.dinv[i] = 1.0 / A[i,i]
    def precon(self, x, y):
        Numeric.multiply(x, self.dinv, y)
\end{pycode}
So,
\begin{pyinline}
>>> D1 = precon.jacobi(A, 1.0, 1)
\end{pyinline}
and
\begin{pyinline}
>>> D2 = diag_prec(A)
\end{pyinline}
yield functionally equivalent preconditioners. \texttt{D1} is probably
faster than \texttt{D2}, because it is fully implemented in C.

%------------------------------------------------------------------------
\subsubsection{The itsolvers module}
\label{sec:python:itsolvers}
%
The \textit{itsolvers} module provides a set of iterative methods for
solving linear systems of equations.

The iterative methods are callable like ordinary Python functions. All
these functions expect the same parameter list, and all function
return values also follow a common standard.

Any user-defined iterative solvers should also follow these
conventions, since other PySparse modules rely on them (e.g.\ the
\textit{jdsym} module)

%------------------------------------------------------------------------
\paragraph{Parameter list}
%
Let's illustrate the calling conventions, using the PCG method
defined as \mbox{\textit{info}, \textit{iter}, \textit{relres} =
  \textit{pcg}($\mat{A}$, $\vect{b}$, $\vect{x}$, \textit{tol},
  \textit{maxit}, $\mat{K}$)}.
%
\begin{arglist}
\item[$\mat{A}$] The parameter $\mat{A}$ represents the coefficient
  matrix of the linear system of equations.  $\mat{A}$ must provide
  the \textit{shape} attribute and the \textit{matvec} and
  \textit{matvec\_transp} methods for multiplying with a vector.
\item[$\vect{b}$] The parameter $\vect{b}$, representing the
  right-hand-side of the linear system, is a rank-1 NumPy array.
\item[$\vect{x}$] The parameter $\vect{x}$ is also a rank-1 NumPy
array. On input, $\vect{x}$ holds the initial guess. On output,
$\vect{x}$ holds the approximate solution of the linear system.
\item[\textit{tol}] The \textit{tol} parameter is a float value
  representing the requested error tolerance. The exact meaning of
  this parameter depends on the actual iterative solver.
\item[\textit{maxit}] The \textit{maxit} parameter is an integer that
  specifies the maximum number of iterations to be executed.
\item[$\mat{K}$] The \emph{optional} $\mat{K}$ parameter represents a
  preconditioner object that supplies the \textit{shape} attribute and
  the \textit{precon} method.
\end{arglist}
The iterative solvers may accept additional parameters, which are
passed as keyword arguments.

%------------------------------------------------------------------------
\paragraph{Return value}
%
All iterative solvers return a tuple with three elements
(\textit{info}, \textit{iter}, \textit{relres}):
\begin{arglist}
\item[\textit{info}] is an integer that contains the exit status of
  the iterative solver. \textit{info} has one of the following values
  \begin{list}{}{}
  \item[2] iteration converged, residual is as small as seems
    reasonable on this machine.
  \item[1] iteration converged, $\vect{b} = \vect{0}$, so the exact
    solution is $\vect{x} = \vect{0}$.
    \item[0] iteration converged, relative error appears to be less
      than \textit{tol}.
    \item[-1] iteration not converged, maximum number of iterations
      was reached.
    \item[-2] iteration not converged, the system involving the
      preconditioner was ill-conditioned.
    \item[-3] iteration not converged, an inner product of the form
      $\vect{x}^T \mat{K}^{-1} \vect{x}$ was not positive, so the
      preconditioning matrix $\mat{K}$ does not appear to be positive
      definite.
    \item[-4] iteration not converged, the matrix $\mat{A}$ appears to
      be very ill-conditioned
    \item[-5] iteration not converged, the method stagnated
    \item[-6] iteration not converged, a scalar quantity became too
      small or too large to continue computing
  \end{list}
  So, $\mathit{info} >= 0$ indicates, that $\vect{x}$ holds an
  acceptable solution, and $\mathit{info} < 0$ indicates an error
  condition.

  Note that not all iterative solvers check for all above error
  conditions.
\item[\textit{iter}] holds the of iterations performed.
\item[\textit{relres}] holds relative error of the solution computed
  by the iterative method. What this actually is, depends on the
  actual iterative method used.
\end{arglist}

%------------------------------------------------------------------------
\paragraph{precon module functions}
%
The module functions defined in the \textit{precon} module implement
various iterative methods (PCG, MINRES, QMRS and CGS, cf.\ 
Section~\ref{sec:itsolv}). The parameters and return values conform to
the conventions described above.

\subparagraph{pcg(A, b, x, tol, maxit, K)}
%
The \textit{pcg} function implements the Preconditioned Conjugate
Gradients method.

\subparagraph{minres(A, b, x, tol, maxit, K)}
%
The \textit{minres} function implements the MINRES method.

\subparagraph{qmrs(A, b, x, tol, maxit, K)}
%
The \textit{qmrs} function implements the QMRS method.

\subparagraph{cgs(A, b, x, tol, maxit, K)} The \textit{min} function
implements the CGS method.
%

%------------------------------------------------------------------------
\paragraph{Example: Solving the poisson system}
%
Let's solve the Poisson system
\begin{equation}
  \label{eq:python:1}
  \mat{L} \vect{x} = \vect{1},
\end{equation}
using the PCG method. $\mat{L}$ is the 2D Poisson matrix, introduced
in Section~\ref{sec:python:spmatrix} and $\vect{1}$ is a vector with
all entries equal to one.

\noindent The Python solution for this task looks as follows:
\begin{pycode}
import Numeric, spmatrix, precon, itsolvers
n = 300
L = poisson2d_sym_blk(n)
b = Numeric.ones(n*n, 'd')
x = Numeric.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(L.to_sss(), b, x, 1e-12, 2000)
\end{pycode}
The code makes use of the Python function \texttt{poisson2d\_sym\_blk},
which was defined in Section~\ref{sec:python:spmatrix}.

\noindent Incorporating e.g.\ a SSOR preconditioner is straight-forward:
\begin{pycode}
import Numeric, spmatrix, precon, itsolvers
n = 300
L = poisson2d_sym_blk(n)
b = Numeric.ones(n*n, 'd')
x = Numeric.zeros(n*n, 'd')
S = L.to_sss()
Kssor = precon.ssor(S)
info, iter, relres = itsolvers.pcg(S, b, x, 1e-12, 2000, Kssor)
\end{pycode}

\noindent The Matlab solution (without preconditioner) may look as follows:
\begin{pycode}
n = 300;
L = poisson2d_kron(n);
[x,flag,relres,iter] = pcg(L, ones(n*n,1), 1e-12, 2000, ...
                           [], [], zeros(n*n,1));
\end{pycode}

%------------------------------------------------------------------------
\subparagraph{Performance comparison with Matlab and native C}
%
To evaluate the performance of the Python implementation we solve the
2D Poisson system \eqref{eq:python:1} using the PCG method. The Python
timings are compared with results of a Matlab and a native C
implementation.

The native C and the Python implementation use the same core
algorithms for PCG method and the matrix-vector multiplication. On the
other hand, C reads the matrix from an external file instead of
building it on the fly. In contrast to the Python implementation, the
native C version does not suffer from the overhead generated by the
runtime argument parsing and calling overhead.

\begin{table}[h]
  \begin{center}
    \begin{tabular}{|l|l|*{3}{d{2}|}}
      \hline
      \multicolumn{1}{|c|}{Function} &
      \multicolumn{1}{c|}{Size} &
      \multicolumn{1}{c|}{$t_\text{constr}$} &
      \multicolumn{1}{c|}{$t_\text{solv}$} &
      \multicolumn{1}{c|}{$t_\text{tot}$} \\
      \hline
      Python   & $n=100$ &  0.03 &   1.12 &   1.15 \\
               & $n=300$ &  0.21 &  49.65 &  49.86 \\
               & $n=500$ &  0.62 & 299.39 & 300.01 \\
               \hline
      native C & $n=100$ &  0.30 &   0.96 &   1.26 \\
               & $n=300$ &  3.14 &  48.38 &  51.52 \\
               & $n=500$ & 10.86 & 288.67 & 299.53 \\
               \hline
      Matlab   & $n=100$ &  0.21 &    8.85 &    9.06 \\
               & $n=300$ &  2.05 &  387.26 &  389.31 \\
               & $n=500$ &  6.23 & 1905.67 & 1911.8  \\
      \hline
    \end{tabular}
    \caption[Performance comparison of Python, Matlab and native C implementations to solve the 2D Poisson system]{Performance comparison of Python, Matlab and native C implementations to solve the linear system \eqref{eq:python:1} without preconditioning\\ \small The execution times are given in seconds. $t_\text{constr}$ is the time for constructing the matrix (or reading it from a file in the case of native C).  $t_\text{solv}$ is the time spent in the PCG solver. $t_\text{tot}$ is the sum of $t_\text{constr}$ and $t_\text{solv}$. Matlab version 6.0 Release 12 was used for these timings.}
    \label{tab:python:perf_itsolvers}
  \end{center}
\end{table}

Tab.~\ref{tab:python:perf_itsolvers} shows the execution times for the
Python, the Matlab and the native C implementation for solving the
linear system \eqref{eq:python:1}. Matlab is not only slower when
building the matrix, also the matrix-vector multiplication seems to be
implemented inefficiently. Considering $t_\text{solv}$, the
performance of Python and native C is comparable.  The Python overhead
is under 4\% for this case.

%------------------------------------------------------------------------
\subsubsection{The jdsym module}
%
The \textit{jdsym} module provides an implementation of the JDSYM
algorithm (cf.\ Algorithm~\ref{alg:jd-sym}), that is conveniently
callable from Python. The module exports a single function called
\textit{jdsym}.

\paragraph{jdsym(A, M, K, kmax, tau, jdtol, itmax, linsolver, **keywords)}
%
Invokes the JDSYM eigenvalue solver (cf.\ Section~\ref{sec:jd-sym}).
JDSYM computes eigenpairs of a generalised matrix eigenvalue problem
of the form
\begin{equation}
  \label{eq:python:2}
  \mat{A} \vect{x} = \lambda \mat{M} \vect{x} 
\end{equation}
or a standard eigenvalue problem of the form
\begin{equation}
  \label{eq:python:3}
  \mat{A} \vect{x} = \lambda \vect{x},
\end{equation}
where $\mat{A}$ is symmetric and $\mat{M}$ is symmetric
positive-definite.

\subparagraph{Arguments}
%
The \textit{jdsym} function has seven mandatory arguments
\begin{arglist}
\item[$\mat{A}$] This parameter represents the matrix
  $\mat{A}$ in \eqref{eq:python:2} or \eqref{eq:python:3}.  $\mat{A}$
  must provide the \textit{shape} attribute and the \textit{matvec}
  and \textit{matvec\_transp} methods.
\item[$\mat{M}$] This parameter represents the matrix $\mat{M}$ in
  \eqref{eq:python:2}.  $\mat{M}$ must provide the \textit{shape}
  attribute and the \textit{matvec} and \textit{matvec\_transp}
  methods. If the standard eigenvalue problem \eqref{eq:python:3} is
  to be solved, the \texttt{None} value can be passed for this
  parameter.
\item[$\mat{K}$] The $\mat{K}$ parameter represents a preconditioner
  object that supplies the \textit{shape} attribute and the
  \textit{precon} method. If no preconditioner is to used, then the
  \texttt{None} value can be passed for this parameter.
\item[\textit{kmax}] is an integer that specifies the number of
  eigenpairs to be computed.
\item[\textit{tau}] is a float value that specifies the target value
  $\tau$. Eigenvalues in the vicinity of $\tau$ will be computed.
\item[\textit{jdtol}] is a float value that specifies the convergence
  tolerance for eigenpairs $(\lambda,\vect{x})$. The converged
  eigenpairs satisfy $\|\mat{A} \vect{x} - \lambda \mat{M}
  \vect{x}\|_2 <{}$ \textit{jdtol}.
\item[\textit{itmax}] is an integer that specifies the maximum number
  of Jacobi-Davidson iterations to undertake.
\item[\textit{linsolver}] is a function that implements an iterative
  method for solving linear systems of equations. The function
  \textit{linsolver} is required to conform to the standards mentioned
  in Section~\ref{sec:python:itsolvers}.
\end{arglist}

\noindent The remaining (optional) arguments are specified using keyword
arguments:
\begin{arglist}
\item[\textit{jmax}] is an integer that specifies the maximum
  dimension of the search subspace. (default: 25)
\item[\textit{jmin}] is an integer that specifies dimension of the
  search subspace after a restart. (default: 10)
\item[\textit{blksize}] is an integer that specifies the block size
  used in the JDSYM algorithm. (default: 1)
\item[\textit{blkwise}] is an integer that affects the convergence
  criterion if \textit{blksize}${}>1$ (cf.\ 
  Section~\ref{sec:jdsym:block}). (default: 0)
\item[\textit{V0}] is NumPy array of rank one or two. It specifies the
  initial search subspace. (default: a randomly generated initial
  search subspace)
\item[\textit{optype}] is an integer specifying the operator type used
  in the correction equation. If \textit{optype}${}=1$, the
  non-symmetric version is used. If \textit{optype}${}=2$, the
  symmetric version is used. See Section~\ref{sec:correq} for more
  information. (default: 2)
\item[\textit{linitmax}] is an integer specifying the maximum number
  steps taken in the inner iteration (iterative linear solver).
  (default: 200)
\item[\textit{eps\_tr}] is a float value setting the tracking
  parameter $\epstr$ described in Section \ref{sec:jdsym:shift}.
  (default: $10^{-3}$)
\item[\textit{toldecay}] is a float value, that influences the dynamic
  adaption of the stopping criterion of the inner iteration.
  \textit{toldecay} corresponds to the value $\gamma$ in
  Section~\ref{sec:jdsym:stopcrit}. (default: 1.5)
\item[\textit{clvl}] is an integer specifying the ``verbosity'' of the
  \textit{jdsym} function. The higher the \textit{clvl} parameter, the
  more output is sent to the standard output. \textit{clvl}${}=0$
  produces no output. (default: 0)
\item[\textit{strategy}] is an integer specifying shifting and sorting
  strategy of JDSYM. \textit{strategy}${}=0$ enables the default JDSYM
  algorithm. \textit{strategy}${}=1$ enables JDSYM to avoid
  convergence to eigenvalues smaller than $\tau$. (default: 0)
\item[\textit{projector}] is used to keep the search subspace and the
  eigenvectors in a certain subspace. The parameter \textit{projector}
  can actually be any Python object, that provides a \textit{shape}
  attribute and a \textit{project} method. The \textit{project} method
  takes a vector (a rank-1 NumPy array) as its sole argument and
  projects that vector in-place. This parameter can be used to
  implement the DIRPROJ and SAUG methods described in
  Sections~\ref{sec:eigprob:direct} and~~\ref{sec:eigprob:simplaug}.
  (Default: no projection)
\end{arglist}

\subparagraph{Return value}
%
\noindent The \textit{jdsym} module function returns a tuple with four elements
(\textit{kconv}, \textit{lambda}, \textit{Q}, \textit{it}):

\begin{arglist}
\item[\textit{kconv}] is an integer that indicates the number of
  converged eigenpairs.
\item[\textit{lambda}] is a rank-1 NumPy array containing the
  converged eigenvalues.
\item[$\mat{Q}$] is a rank-2 NumPy array containing the converged
  eigenvectors. The i-th eigenvector is accessed by \texttt{Q[:,i]}.
\item[\textit{it}] is an integer indicating the number of
  Jacobi-Davidson steps (outer iteration steps) performed.
\end{arglist}

%------------------------------------------------------------------------
\paragraph{Example: Maxwell problem}
The following code illustrates the use of the \textit{jdsym} module.
Two matrices $\mat{A}$ and $\mat{M}$ are read from files. A Jacobi
preconditioner from $\mat{A} - \tau\mat{M}$ is built. Then the JDSYM
eigensolver is called, calculating 5 eigenvalues near 25.0 and the
associated eigenvalues to an accuracy of $10^{-10}$.  We set
\textit{strategy}${}=1$ to avoid convergence to the high-dimensional
null space of ($\mat{A}$, $\mat{M}$).
\begin{pycode}
import spmatrix, itsolvers, jdsym, precon

A = spmatrix.ll_mat_from_mtx('edge6x3x5_A.mtx')
M = spmatrix.ll_mat_from_mtx('edge6x3x5_B.mtx')
tau = 25.0

Atau = A.copy()
Atau.shift(-tau, M)
K = precon.jacobi(Atau)

A = A.to_sss(); M = M.to_sss()
k_conv, lmbd, Q, it  = \symbol{92}
      jdsym.jdsym(A, M, K, 5, tau, 1e-10, 150, itsolvers.qmrs,
                  jmin=5, jmax=10, clvl=1, strategy=1)
\end{pycode}
This code takes $33.71$ seconds to compute the five wanted eigenpairs.
A native C version, using the same computational kernels, takes
$35.64$ for the same task. We expected the Python version to be slower
due to the overhead generated when calling the matrix-vector
multiplication and the preconditioner, but surprisingly the Python
code was even a bit faster.

%------------------------------------------------------------------------
\subsubsection{The superlu module}
%
The \textit{superlu} module interfaces the SuperLU library to make it
usable by Python code. SuperLU is a software package written in C,
that is able to compute a $LU$-factorisation of a general
non-symmetric, sparse matrix with partial pivoting.

The \textit{superlu} module exports a single function, called
\textit{factorize}.

%------------------------------------------------------------------------
\paragraph{factorize(A, diag\_pivot\_thresh, drop\_tol, relax, panel\_size, permc\_spec)}
%
The factorise module function computes a $LU$-factorisation of the
matrix $\mat{A}$. All but the first parameter are optional and can be
specified using keyword arguments.
\begin{arglist}
\item[$\mat{A}$] is a \textit{csr\_mat} object that represents the
  matrix to be factorised.
\item[\textit{diag\_pivot\_thresh}] is a float value in the interval
  $[0,1]$ representing the threshold for partial pivoting.
  \textit{diag\_pivot\_thresh}${}=0$ corresponds to no pivoting.
  \textit{diag\_pivot\_thresh}${}=1$ corresponds to partial pivoting.
  (default: $1.0$)
\item[\textit{drop\_tol}] is a float value in the interval $[0,1]$
  representing the drop tolerance parameter.  \textit{drop\_tol}${}=0$
  corresponds to the exact factorisation. \\
  CAUTION: the \textit{drop\_tol} has no effect in the current and all
  older SuperLU releases (versions 2.0 and below). (default: 0.0)
\item[\textit{relax}] is an integer that controls the degree of
  relaxing supernodes. (default: 1)
\item[\textit{panel\_size}] is an integer specifying the maximum number
  of columns that form a panel. (default: 10)
\item[\textit{permc\_spec}] is an integer specifying the matrix
  ordering used for the factorisation:
  \begin{list}{}{}
  \item[0] natural ordering
  \item[1] MMD applied to the structure of $\mat{A}^T\mat{A}$
  \item[2] MMD applied to the structure of $\mat{A}^T + \mat{A}$
  \item[3] COLAMD, approximate minimum degree column ordering
  \end{list}
  (default: 2)
\end{arglist}

The \textit{factorize} function returns an object of type
\textit{superlu\_context}. This object encapsulates the $LU$-factors
computed during the factorisation.

%------------------------------------------------------------------------
\paragraph{superlu\_context object attributes}
%
\subparagraph{shape} 
%
The \textit{shape} attribute, returns a 2-tuple describing the
dimension of the factorised matrix $\mat{A}$.

\subparagraph{nnz}
%
The \textit{nnz} attribute returns an integer holding the total number
of non-zero entries stored in both the $\mat{L}$ and the $\mat{U}$
factors.

%------------------------------------------------------------------------
\paragraph{superlu\_context object methods}
%
\subparagraph{solve(b, x, trans)}
%
The \textit{solve} method accepts two rank-1 NumPy arrays $\vect{b}$
and $\vect{x}$ of appropriate size and assigns the solution of the
linear system
\begin{equation*}
  \mat{A}\vect{x} = \vect{b}
\end{equation*}
to $\vect{x}$. If the optional parameter \textit{trans} is set to
\texttt{'T'}, then the transposed system
\begin{equation*}
  \mat{A}^T\vect{x} = \vect{b}
\end{equation*}
is solved instead.

%------------------------------------------------------------------------
\paragraph{Example: 2D Poisson matrix}
%
Let's now solve the 2D Poisson system
\begin{equation*}
  \mat{L} \vect{x} = \vect{1},
\end{equation*}
using a factorisation. $\mat{L}$ is the 2D Poisson matrix, introduced
in Section~\ref{sec:python:spmatrix} and $\vect{1}$ is a vector with
all one entries.

\noindent The Python solution for this task looks as follows:
\begin{pycode}
import Numeric, spmatrix, superlu
n = 100
L = poisson2d_sym_blk(n)
b = Numeric.ones(n*n, 'd')
x = Numeric.zeros(n*n, 'd')
LU = superlu.factorize(L.to_csr(), diag_pivot_thresh=0.0)
LU.solve(b, x)
\end{pycode}
The code makes use of the Python function
\texttt{poisson2d\_sym\_blk}, which was defined in
Section~\ref{sec:python:spmatrix}.

\appendix
\include{spformat}


\end{document}



%%% Local Variables: 
%%% mode: latex
%%% TeX-master: "spmatrix_manual"
%%% End: