1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*-------------------------------------------------------------------------
PCG Preconditioned Conjugate Gradients Method
X = PCG(A,B) attempts to solve the system of linear equations A*X=B
for X. The coefficient matrix A must be symmetric and positive
definite and the right hand side (column) vector B must have length
N, where A is N-by-N. PCG will start iterating from an initial
guess. Iterates are produced until the method either converges,
fails, or has computed the maximum number of iterations.
Convergence is achieved when an iterate X has relative residual
NORM(B-A*X)/NORM(B) less than or equal to the tolerance of the
method. If PCG converged, then a message to that effect is
displayed. If PCG failed to converge after the maximum number of
iterations or halted for any reason, then a message is printed
displaying the relative residual and the iteration number at which
the method stopped or failed.
Parameters:
N problem size, A is an N-by-N matrix, B has length N
X on entry: the initial guess
on exit: the computed approximate solution
B the right hand side of the system
TOL error tolerance
MAXIT maximum number of iterations
CLVL verbosity of output (0: no output, 1: some output, 2: more output)
ITER number of iterations of iterations
RELRES norm of residual upon exit
FLAG exit code (see below)
WORK work array. must be of size 4*N
MATVEC function that performs multiplication with matrix A
PRECON function that applies preconditioner (can be NULL)
FLAG describes the convergence of PCG. If FLAG is
0 then PCG converged to the desired tolerance TOL within MAXIT
iterations without failing for any reason.
1 then PCG iterated MAXIT times but did not converge.
2 then a system of equations of the form M*Y = R was ill-conditioned.
3 then PCG stagnated (two consecutive iterates were the same).
4 then one of the scalar quantities calculated during PCG became
too small or too large to continue computing.
$Id: pcg.c,v 1.1.1.1 2003/11/09 12:35:47 geus Exp $
Roman Geus, ETHZ
--------------------------------------------------------------------------*/
#include <assert.h>
#include "blas.h"
#include "fortran.h"
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "pcg.h"
/* function prototypes */
static void itermsg(double tol,
int maxit,
int flag,
int iter,
double relres);
/* PCG - Conjugate Gradients Algorithm
*/
void pcg(int n,
double *x,
double *b,
double tol,
int maxit,
int clvl,
int *iter,
double *relres,
int *flag,
double *work,
void (*matvec)(double *, double *),
void (*precon)(double *, double *))
{
double ALPHA; /* used for passing parameters */
int ONE = 1; /* to BLAS routines */
double n2b; /* norm of rhs vector */
double tolb; /* requested tolerance for residual */
double normr; /* residual norm */
double alpha, beta;
double rho, rho1;
double pq;
double dmax, ddum; /* used to detect stagnation */
int stag; /* flag to indicate stagnation */
int it; /* current iteration number */
int i; /* index variable */
double *r, *z, *p, *q; /* pointers to vectors in PCG algorithm */
/* setup pointers into work */
r = work;
z = work + n;
p = work + 2*n;
q = work + 3*n;
/* Check for all zero right hand side vector => all zero solution */
n2b = F77(dnrm2)(&n, b, &ONE);/* Norm of rhs vector, b */
if (n2b == 0.0) { /* if rhs vector is all zeros */
for (i = 0; i < n; i ++) /* then solution is all zeros */
x[i] = 0.0;
*flag = 0; /* a valid solution has been obtained */
*relres = 0.0; /* the relative residual is actually 0/0 */
*iter = 0; /* no iterations need be performed */
if (clvl)
itermsg(tol,maxit,*flag,*iter,*relres);
return;
}
/* Set up for the method */
*flag = 1;
tolb = tol * n2b; /* Relative tolerance */
matvec(x, r); /* Zero-th residual: r = b - A * x*/
for (i = 0; i < n; i ++) /* then solution is all zeros */
r[i] = b[i] - r[i];
normr = F77(dnrm2)(&n, r, &ONE); /* Norm of residual */
if (normr <= tolb) { /* Initial guess is a good enough solution */
*flag = 0;
*relres = normr / n2b;
*iter = 0;
if (clvl)
itermsg(tol,maxit,*flag,*iter,*relres);
return;
}
rho = 1.0;
stag = 0; /* stagnation of the method */
/* loop over maxit iterations (unless convergence or failure) */
for (it = 1; it <= maxit; it ++) {
if (precon) {
precon(r, z);
/*
if isinf(norm(y,inf))
flag = 2;
break
end
*/
} else {
F77(dcopy)(&n, r, &ONE, z, &ONE);
}
rho1 = rho;
rho = F77(ddot)(&n, r, &ONE, z, &ONE);
if (rho == 0.0) { /* or isinf(rho) */
*flag = 4;
break;
}
if (it == 1) {
F77(dcopy)(&n, z, &ONE, p, &ONE);
} else {
beta = rho / rho1;
if (beta == 0.0) { /* | isinf(beta) */
*flag = 4;
break;
}
for (i = 0; i < n; i ++) /* p = z + beta * p; */
p[i] = z[i] + beta * p[i];
}
matvec(p, q); /* q = A * p */
pq = F77(ddot)(&n, p, &ONE, q, &ONE); /* pq = p' * q */
if (pq == 0.0) { /* | isinf(pq) */
*flag = 4;
break;
} else {
alpha = rho / pq;
}
/*
if isinf(alpha)
flag = 4;
break
end
*/
if (alpha == 0.0) /* stagnation of the method */
stag = 1;
/* Check for stagnation of the method */
if (stag == 0) {
dmax = 0.0;
for (i = 0; i < n; i ++)
if (x[i] != 0.0) {
ddum = fabs(alpha * p[i]/x[i]);
if (ddum > dmax)
dmax = ddum;
} else
if (p[i] != 0.0)
dmax = 1.0;
stag = (1.0 + dmax == 1.0);
}
F77(daxpy)(&n, &alpha, p, &ONE, x, &ONE); /* form new iterate */
ALPHA = -alpha;
F77(daxpy)(&n, &ALPHA, q, &ONE, r, &ONE); /* r = r - alpha * q */
/* check for convergence */
#ifdef EXPENSIVE_CRIT
matvec(x, z); /* normr = norm(b - A * x) */
for (i = 0; i < n; i ++)
z[i] = b[i] - z[i];
normr = F77(dnrm2)(&n, z, &ONE);
#else
normr = F77(dnrm2)(&n, r, &ONE); /* normr = norm(r) */
#endif
if (normr <= tolb) {
*flag = 0;
break;
}
if (stag == 1) {
*flag = 3;
break;
}
} /* for it = 1 : maxit */
*iter = it;
*relres = normr / n2b;
if (clvl)
itermsg(tol,maxit,*flag,*iter,*relres);
}
/* PCG_F77 - Fortran interface to PCG
*/
void F77(pcg_f77)(int *n,
double *x,
double *b,
double *tol,
int *maxit,
int *clvl,
int *iter,
double *relres,
int *flag,
double *work,
void (*matvec)(double *, double *),
void (*precon)(double *, double *)) {
pcg(*n,
x,
b,
*tol,
*maxit,
*clvl,
iter,
relres,
flag,
work,
matvec,
precon);
}
/* ITERMSG - Displays the final message for PCG method
*/
static void itermsg(double tol,
int maxit,
int flag,
int iter,
double relres) {
if (flag != 0) {
printf("PCG stopped at iteration %d without converging to the desired tolerance %0.2g", iter, tol);
}
switch(flag) {
case 0:
if (iter == 0)
printf("The initial guess has relative residual %0.2g which is within\nthe desired tolerance %0.2g so PCG returned it without iterating.",
relres, tol);
else
printf("PCG converged at iteration %d to a solution with relative residual %0.2g", iter, relres);
break;
case 1:
printf("\nbecause the maximum number of iterations was reached.");
break;
case 2:
printf("\nbecause the system involving the preconditioner was ill conditioned.");
break;
case 3:
printf("\nbecause the method stagnated.");
break;
case 4:
printf("\nbecause a scalar quantity became too small or too large to continue computing.");
break;
}
if (flag != 0)
printf("\nThe iterate returned (number %d) has relative residual %0.2g",iter,relres);
printf("\n");
}
|