1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/* zuse: cc -o poisson_test -fast -native poisson_test.c mmio.c pcg.c -lm -xlic_lib=sunperf */
/* ru-lt13: cc -O poisson_test.c mmio.c pcg.c -o poisson_test -lblas -lg2c -lm */
#include <assert.h>
#include <stdio.h>
#include "mmio.h"
/* matrix A */
static int n_s;
static double *va_s, *da_s;
static int *ja_s, *ia_s;
/* CONVERT_COO_SSS - convert sparse matrix from COO to SSS format
*/
void convert_COO_SSS(int n, int nz,
int *i_coo, int *j_coo, double *v_coo,
int **ia, int **ja, double **va, double **da) {
int i, k, l, t, nnz;
int *root;
root = (int *)malloc(n * sizeof(int));
assert(root);
/* allocate SSS matrix structure (1st part) */
(*da) = (double *)malloc(n * sizeof(double));
for (i = 0; i < n; i ++) {
root[i] = 0;
(*da)[i] = 0.0;
}
/* build n linked lists */
nnz = 0;
for (k = 0; k < nz; k ++) {
if (i_coo[k] == j_coo[k])
/* diagonal element */
(*da)[i_coo[k]] = v_coo[k];
else {
/* off diagonal element */
if (i_coo[k] < j_coo[k]) { /* move to lower triangle */
t = i_coo[k];
i_coo[k] = j_coo[k];
j_coo[k] = t;
}
i = i_coo[k]; /* link */
i_coo[k] = root[i];
root[i] = k;
nnz ++;
}
}
/* allocate SSS matrix structure (2nd part) */
(*ia) = (int *)malloc((n+1) * sizeof(int));
(*va) = (double *)malloc((nnz * sizeof(double)));
(*ja) = (int *)malloc(nnz * sizeof(int));
/* fill SSS matrix structure */
k = 0;
for (i = 0; i < n; i ++) {
(*ia)[i] = k;
l = root[i];
while (l != 0) {
(*ja)[k] = j_coo[l];
(*va)[k] = v_coo[l];
k ++;
l = i_coo[l];
}
}
(*ia)[n] = k;
assert(k == nnz);
free(root);
}
/* READ_MTX - read symmetric sparse matrix in MatrixMarket format
*/
void read_MTX_SSS(char *fname, int *n,
double **va, double **da, int **ja, int **ia) {
int m, nz, ret_code, i;
double *v_coo;
int *i_coo, *j_coo;
MM_typecode matcode;
FILE *f;
f = fopen(fname, "r");
assert(f != NULL);
ret_code = mm_read_banner(f, &matcode);
assert(ret_code == 0);
assert(mm_is_real(matcode) && mm_is_matrix(matcode) &&
mm_is_sparse(matcode) && mm_is_symmetric(matcode));
ret_code = mm_read_mtx_crd_size(f, &m, n, &nz);
assert(ret_code == 0);
assert(m == *n);
/* read COO format */
i_coo = (int *)malloc(nz * sizeof(int));
j_coo = (int *)malloc(nz * sizeof(int));
v_coo = (double *)malloc(nz * sizeof(double));
assert(i_coo && j_coo && v_coo);
for (i = 0; i < nz; i ++) {
fscanf(f, "%d %d %lg\n", &i_coo[i], &j_coo[i], &v_coo[i]);
i_coo[i]--; /* adjust from 1-based to 0-based */
j_coo[i]--;
}
fclose(f);
/* convert to SSS format */
convert_COO_SSS(*n, nz, i_coo, j_coo, v_coo, ia, ja, va, da);
free(i_coo); free(j_coo); free(v_coo);
}
/* MATVEC - matrix vector multiplications
*/
void matvec(double *x, double *y) {
double s, v, xi;
int i, j, k;
for (i = 0; i < n_s; i ++) {
xi = x[i];
s = 0.0;
for (k = ia_s[i]; k < ia_s[i+1]; k ++) {
j = ja_s[k];
v = va_s[k];
s += v * x[j];
y[j] += v * xi;
}
y[i] = s + da_s[i]*xi;
}
}
void main () {
double *x, *b, *work;
int i;
double relres;
int iter, flag;
read_MTX_SSS("matrices/poi2d_100.mtx", &n_s, &va_s, &da_s, &ja_s, &ia_s);
x = (double *) malloc(n_s * sizeof(double));
b = (double *) malloc(n_s * sizeof(double));
work = (double *) malloc(4*n_s * sizeof(double));
assert(x != NULL && b != NULL && work != NULL);
for (i = 0; i < n_s; i ++) {
x[i] = 0.0;
b[i] = 1.0;
}
printf("Starting PCG solver...\n");
pcg(n_s, x, b, 1e-12, 2000, 1, &iter, &relres, &flag, work, matvec, NULL);
}
|