1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
|
/* ========================================================================== */
/* === colamd - a sparse matrix column ordering algorithm =================== */
/* ========================================================================== */
/*
colamd: An approximate minimum degree column ordering algorithm.
Purpose:
Colamd computes a permutation Q such that the Cholesky factorization of
(AQ)'(AQ) has less fill-in and requires fewer floating point operations
than A'A. This also provides a good ordering for sparse partial
pivoting methods, P(AQ) = LU, where Q is computed prior to numerical
factorization, and P is computed during numerical factorization via
conventional partial pivoting with row interchanges. Colamd is the
column ordering method used in SuperLU, part of the ScaLAPACK library.
It is also available as user-contributed software for Matlab 5.2,
available from MathWorks, Inc. (http://www.mathworks.com). This
routine can be used in place of COLMMD in Matlab. By default, the \
and / operators in Matlab perform a column ordering (using COLMMD)
prior to LU factorization using sparse partial pivoting, in the
built-in Matlab LU(A) routine.
Authors:
The authors of the code itself are Stefan I. Larimore and Timothy A.
Davis (davis@cise.ufl.edu), University of Florida. The algorithm was
developed in collaboration with John Gilbert, Xerox PARC, and Esmond
Ng, Oak Ridge National Laboratory.
Date:
August 3, 1998. Version 1.0.
Acknowledgements:
This work was supported by the National Science Foundation, under
grants DMS-9504974 and DMS-9803599.
Notice:
Copyright (c) 1998 by the University of Florida. All Rights Reserved.
THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
Permission is hereby granted to use or copy this program for any
purpose, provided the above notices are retained on all copies.
User documentation of any code that uses this code must cite the
Authors, the Copyright, and "Used by permission." If this code is
accessible from within Matlab, then typing "help colamd" or "colamd"
(with no arguments) must cite the Authors. Permission to modify the
code and to distribute modified code is granted, provided the above
notices are retained, and a notice that the code was modified is
included with the above copyright notice. You must also retain the
Availability information below, of the original version.
This software is provided free of charge.
Availability:
This file is located at
http://www.cise.ufl.edu/~davis/colamd/colamd.c
The colamd.h file is required, located in the same directory.
The colamdmex.c file provides a Matlab interface for colamd.
The symamdmex.c file provides a Matlab interface for symamd, which is
a symmetric ordering based on this code, colamd.c. All codes are
purely ANSI C compliant (they use no Unix-specific routines, include
files, etc.).
*/
/* ========================================================================== */
/* === Description of user-callable routines ================================ */
/* ========================================================================== */
/*
Each user-callable routine (declared as PUBLIC) is briefly described below.
Refer to the comments preceding each routine for more details.
----------------------------------------------------------------------------
colamd_recommended:
----------------------------------------------------------------------------
Usage:
Alen = colamd_recommended (nnz, n_row, n_col) ;
Purpose:
Returns recommended value of Alen for use by colamd. Returns -1
if any input argument is negative.
Arguments:
int nnz ; Number of nonzeros in the matrix A. This must
be the same value as p [n_col] in the call to
colamd - otherwise you will get a wrong value
of the recommended memory to use.
int n_row ; Number of rows in the matrix A.
int n_col ; Number of columns in the matrix A.
----------------------------------------------------------------------------
colamd_set_defaults:
----------------------------------------------------------------------------
Usage:
colamd_set_defaults (knobs) ;
Purpose:
Sets the default parameters.
Arguments:
double knobs [COLAMD_KNOBS] ; Output only.
Rows with more than (knobs [COLAMD_DENSE_ROW] * n_col) entries
are removed prior to ordering. Columns with more than
(knobs [COLAMD_DENSE_COL] * n_row) entries are removed
prior to ordering, and placed last in the output column
ordering. Default values of these two knobs are both 0.5.
Currently, only knobs [0] and knobs [1] are used, but future
versions may use more knobs. If so, they will be properly set
to their defaults by the future version of colamd_set_defaults,
so that the code that calls colamd will not need to change,
assuming that you either use colamd_set_defaults, or pass a
(double *) NULL pointer as the knobs array to colamd.
----------------------------------------------------------------------------
colamd:
----------------------------------------------------------------------------
Usage:
colamd (n_row, n_col, Alen, A, p, knobs) ;
Purpose:
Computes a column ordering (Q) of A such that P(AQ)=LU or
(AQ)'AQ=LL' have less fill-in and require fewer floating point
operations than factorizing the unpermuted matrix A or A'A,
respectively.
Arguments:
int n_row ;
Number of rows in the matrix A.
Restriction: n_row >= 0.
Colamd returns FALSE if n_row is negative.
int n_col ;
Number of columns in the matrix A.
Restriction: n_col >= 0.
Colamd returns FALSE if n_col is negative.
int Alen ;
Restriction (see note):
Alen >= 2*nnz + 6*(n_col+1) + 4*(n_row+1) + n_col + COLAMD_STATS
Colamd returns FALSE if these conditions are not met.
Note: this restriction makes an modest assumption regarding
the size of the two typedef'd structures, below. We do,
however, guarantee that
Alen >= colamd_recommended (nnz, n_row, n_col)
will be sufficient.
int A [Alen] ; Input argument, stats on output.
A is an integer array of size Alen. Alen must be at least as
large as the bare minimum value given above, but this is very
low, and can result in excessive run time. For best
performance, we recommend that Alen be greater than or equal to
colamd_recommended (nnz, n_row, n_col), which adds
nnz/5 to the bare minimum value given above.
On input, the row indices of the entries in column c of the
matrix are held in A [(p [c]) ... (p [c+1]-1)]. The row indices
in a given column c need not be in ascending order, and
duplicate row indices may be be present. However, colamd will
work a little faster if both of these conditions are met
(Colamd puts the matrix into this format, if it finds that the
the conditions are not met).
The matrix is 0-based. That is, rows are in the range 0 to
n_row-1, and columns are in the range 0 to n_col-1. Colamd
returns FALSE if any row index is out of range.
The contents of A are modified during ordering, and are thus
undefined on output with the exception of a few statistics
about the ordering (A [0..COLAMD_STATS-1]):
A [0]: number of dense or empty rows ignored.
A [1]: number of dense or empty columns ignored (and ordered
last in the output permutation p)
A [2]: number of garbage collections performed.
A [3]: 0, if all row indices in each column were in sorted
order, and no duplicates were present.
1, otherwise (in which case colamd had to do more work)
Note that a row can become "empty" if it contains only
"dense" and/or "empty" columns, and similarly a column can
become "empty" if it only contains "dense" and/or "empty" rows.
Future versions may return more statistics in A, but the usage
of these 4 entries in A will remain unchanged.
int p [n_col+1] ; Both input and output argument.
p is an integer array of size n_col+1. On input, it holds the
"pointers" for the column form of the matrix A. Column c of
the matrix A is held in A [(p [c]) ... (p [c+1]-1)]. The first
entry, p [0], must be zero, and p [c] <= p [c+1] must hold
for all c in the range 0 to n_col-1. The value p [n_col] is
thus the total number of entries in the pattern of the matrix A.
Colamd returns FALSE if these conditions are not met.
On output, if colamd returns TRUE, the array p holds the column
permutation (Q, for P(AQ)=LU or (AQ)'(AQ)=LL'), where p [0] is
the first column index in the new ordering, and p [n_col-1] is
the last. That is, p [k] = j means that column j of A is the
kth pivot column, in AQ, where k is in the range 0 to n_col-1
(p [0] = j means that column j of A is the first column in AQ).
If colamd returns FALSE, then no permutation is returned, and
p is undefined on output.
double knobs [COLAMD_KNOBS] ; Input only.
See colamd_set_defaults for a description. If the knobs array
is not present (that is, if a (double *) NULL pointer is passed
in its place), then the default values of the parameters are
used instead.
*/
/* ========================================================================== */
/* === Include files ======================================================== */
/* ========================================================================== */
/* limits.h: the largest positive integer (INT_MAX) */
#include <limits.h>
/* colamd.h: knob array size, stats output size, and global prototypes */
#include "colamd.h"
/* ========================================================================== */
/* === Scaffolding code definitions ======================================== */
/* ========================================================================== */
/* Ensure that debugging is turned off: */
#ifndef NDEBUG
#define NDEBUG
#endif
/* assert.h: the assert macro (no debugging if NDEBUG is defined) */
#include <assert.h>
/*
Our "scaffolding code" philosophy: In our opinion, well-written library
code should keep its "debugging" code, and just normally have it turned off
by the compiler so as not to interfere with performance. This serves
several purposes:
(1) assertions act as comments to the reader, telling you what the code
expects at that point. All assertions will always be true (unless
there really is a bug, of course).
(2) leaving in the scaffolding code assists anyone who would like to modify
the code, or understand the algorithm (by reading the debugging output,
one can get a glimpse into what the code is doing).
(3) (gasp!) for actually finding bugs. This code has been heavily tested
and "should" be fully functional and bug-free ... but you never know...
To enable debugging, comment out the "#define NDEBUG" above. The code will
become outrageously slow when debugging is enabled. To control the level of
debugging output, set an environment variable D to 0 (little), 1 (some),
2, 3, or 4 (lots).
*/
/* ========================================================================== */
/* === Row and Column structures ============================================ */
/* ========================================================================== */
typedef struct ColInfo_struct
{
int start ; /* index for A of first row in this column, or DEAD */
/* if column is dead */
int length ; /* number of rows in this column */
union
{
int thickness ; /* number of original columns represented by this */
/* col, if the column is alive */
int parent ; /* parent in parent tree super-column structure, if */
/* the column is dead */
} shared1 ;
union
{
int score ; /* the score used to maintain heap, if col is alive */
int order ; /* pivot ordering of this column, if col is dead */
} shared2 ;
union
{
int headhash ; /* head of a hash bucket, if col is at the head of */
/* a degree list */
int hash ; /* hash value, if col is not in a degree list */
int prev ; /* previous column in degree list, if col is in a */
/* degree list (but not at the head of a degree list) */
} shared3 ;
union
{
int degree_next ; /* next column, if col is in a degree list */
int hash_next ; /* next column, if col is in a hash list */
} shared4 ;
} ColInfo ;
typedef struct RowInfo_struct
{
int start ; /* index for A of first col in this row */
int length ; /* number of principal columns in this row */
union
{
int degree ; /* number of principal & non-principal columns in row */
int p ; /* used as a row pointer in init_rows_cols () */
} shared1 ;
union
{
int mark ; /* for computing set differences and marking dead rows*/
int first_column ;/* first column in row (used in garbage collection) */
} shared2 ;
} RowInfo ;
/* ========================================================================== */
/* === Definitions ========================================================== */
/* ========================================================================== */
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#define ONES_COMPLEMENT(r) (-(r)-1)
#define TRUE (1)
#define FALSE (0)
#define EMPTY (-1)
/* Row and column status */
#define ALIVE (0)
#define DEAD (-1)
/* Column status */
#define DEAD_PRINCIPAL (-1)
#define DEAD_NON_PRINCIPAL (-2)
/* Macros for row and column status update and checking. */
#define ROW_IS_DEAD(r) ROW_IS_MARKED_DEAD (Row[r].shared2.mark)
#define ROW_IS_MARKED_DEAD(row_mark) (row_mark < ALIVE)
#define ROW_IS_ALIVE(r) (Row [r].shared2.mark >= ALIVE)
#define COL_IS_DEAD(c) (Col [c].start < ALIVE)
#define COL_IS_ALIVE(c) (Col [c].start >= ALIVE)
#define COL_IS_DEAD_PRINCIPAL(c) (Col [c].start == DEAD_PRINCIPAL)
#define KILL_ROW(r) { Row [r].shared2.mark = DEAD ; }
#define KILL_PRINCIPAL_COL(c) { Col [c].start = DEAD_PRINCIPAL ; }
#define KILL_NON_PRINCIPAL_COL(c) { Col [c].start = DEAD_NON_PRINCIPAL ; }
/* Routines are either PUBLIC (user-callable) or PRIVATE (not user-callable) */
#define PUBLIC
#define PRIVATE static
/* ========================================================================== */
/* === Prototypes of PRIVATE routines ======================================= */
/* ========================================================================== */
PRIVATE int init_rows_cols
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A [],
int p []
) ;
PRIVATE void init_scoring
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A [],
int head [],
double knobs [COLAMD_KNOBS],
int *p_n_row2,
int *p_n_col2,
int *p_max_deg
) ;
PRIVATE int find_ordering
(
int n_row,
int n_col,
int Alen,
RowInfo Row [],
ColInfo Col [],
int A [],
int head [],
int n_col2,
int max_deg,
int pfree
) ;
PRIVATE void order_children
(
int n_col,
ColInfo Col [],
int p []
) ;
PRIVATE void detect_super_cols
(
#ifndef NDEBUG
int n_col,
RowInfo Row [],
#endif
ColInfo Col [],
int A [],
int head [],
int row_start,
int row_length
) ;
PRIVATE int garbage_collection
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A [],
int *pfree
) ;
PRIVATE int clear_mark
(
int n_row,
RowInfo Row []
) ;
/* ========================================================================== */
/* === Debugging definitions ================================================ */
/* ========================================================================== */
#ifndef NDEBUG
/* === With debugging ======================================================= */
/* stdlib.h: for getenv and atoi, to get debugging level from environment */
#include <stdlib.h>
/* stdio.h: for printf (no printing if debugging is turned off) */
#include <stdio.h>
PRIVATE void debug_deg_lists
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int head [],
int min_score,
int should,
int max_deg
) ;
PRIVATE void debug_mark
(
int n_row,
RowInfo Row [],
int tag_mark,
int max_mark
) ;
PRIVATE void debug_matrix
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A []
) ;
PRIVATE void debug_structures
(
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A [],
int n_col2
) ;
/* the following is the *ONLY* global variable in this file, and is only */
/* present when debugging */
PRIVATE int debug_colamd ; /* debug print level */
#define DEBUG0(params) { (void) printf params ; }
#define DEBUG1(params) { if (debug_colamd >= 1) (void) printf params ; }
#define DEBUG2(params) { if (debug_colamd >= 2) (void) printf params ; }
#define DEBUG3(params) { if (debug_colamd >= 3) (void) printf params ; }
#define DEBUG4(params) { if (debug_colamd >= 4) (void) printf params ; }
#else
/* === No debugging ========================================================= */
#define DEBUG0(params) ;
#define DEBUG1(params) ;
#define DEBUG2(params) ;
#define DEBUG3(params) ;
#define DEBUG4(params) ;
#endif
/* ========================================================================== */
/* ========================================================================== */
/* === USER-CALLABLE ROUTINES: ============================================== */
/* ========================================================================== */
/* ========================================================================== */
/* === colamd_recommended =================================================== */
/* ========================================================================== */
/*
The colamd_recommended routine returns the suggested size for Alen. This
value has been determined to provide good balance between the number of
garbage collections and the memory requirements for colamd.
*/
PUBLIC int colamd_recommended /* returns recommended value of Alen. */
(
/* === Parameters ======================================================= */
int nnz, /* number of nonzeros in A */
int n_row, /* number of rows in A */
int n_col /* number of columns in A */
)
{
/* === Local variables ================================================== */
int minimum ; /* bare minimum requirements */
int recommended ; /* recommended value of Alen */
if (nnz < 0 || n_row < 0 || n_col < 0)
{
/* return -1 if any input argument is corrupted */
DEBUG0 (("colamd_recommended error!")) ;
DEBUG0 ((" nnz: %d, n_row: %d, n_col: %d\n", nnz, n_row, n_col)) ;
return (-1) ;
}
minimum =
2 * (nnz) /* for A */
+ (((n_col) + 1) * sizeof (ColInfo) / sizeof (int)) /* for Col */
+ (((n_row) + 1) * sizeof (RowInfo) / sizeof (int)) /* for Row */
+ n_col /* minimum elbow room to guarrantee success */
+ COLAMD_STATS ; /* for output statistics */
/* recommended is equal to the minumum plus enough memory to keep the */
/* number garbage collections low */
recommended = minimum + nnz/5 ;
return (recommended) ;
}
/* ========================================================================== */
/* === colamd_set_defaults ================================================== */
/* ========================================================================== */
/*
The colamd_set_defaults routine sets the default values of the user-
controllable parameters for colamd:
knobs [0] rows with knobs[0]*n_col entries or more are removed
prior to ordering.
knobs [1] columns with knobs[1]*n_row entries or more are removed
prior to ordering, and placed last in the column
permutation.
knobs [2..19] unused, but future versions might use this
*/
PUBLIC void colamd_set_defaults
(
/* === Parameters ======================================================= */
double knobs [COLAMD_KNOBS] /* knob array */
)
{
/* === Local variables ================================================== */
int i ;
if (!knobs)
{
return ; /* no knobs to initialize */
}
for (i = 0 ; i < COLAMD_KNOBS ; i++)
{
knobs [i] = 0 ;
}
knobs [COLAMD_DENSE_ROW] = 0.5 ; /* ignore rows over 50% dense */
knobs [COLAMD_DENSE_COL] = 0.5 ; /* ignore columns over 50% dense */
}
/* ========================================================================== */
/* === colamd =============================================================== */
/* ========================================================================== */
/*
The colamd routine computes a column ordering Q of a sparse matrix
A such that the LU factorization P(AQ) = LU remains sparse, where P is
selected via partial pivoting. The routine can also be viewed as
providing a permutation Q such that the Cholesky factorization
(AQ)'(AQ) = LL' remains sparse.
On input, the nonzero patterns of the columns of A are stored in the
array A, in order 0 to n_col-1. A is held in 0-based form (rows in the
range 0 to n_row-1 and columns in the range 0 to n_col-1). Row indices
for column c are located in A [(p [c]) ... (p [c+1]-1)], where p [0] = 0,
and thus p [n_col] is the number of entries in A. The matrix is
destroyed on output. The row indices within each column do not have to
be sorted (from small to large row indices), and duplicate row indices
may be present. However, colamd will work a little faster if columns are
sorted and no duplicates are present. Matlab 5.2 always passes the matrix
with sorted columns, and no duplicates.
The integer array A is of size Alen. Alen must be at least of size
(where nnz is the number of entries in A):
nnz for the input column form of A
+ nnz for a row form of A that colamd generates
+ 6*(n_col+1) for a ColInfo Col [0..n_col] array
(this assumes sizeof (ColInfo) is 6 int's).
+ 4*(n_row+1) for a RowInfo Row [0..n_row] array
(this assumes sizeof (RowInfo) is 4 int's).
+ elbow_room must be at least n_col. We recommend at least
nnz/5 in addition to that. If sufficient,
changes in the elbow room affect the ordering
time only, not the ordering itself.
+ COLAMD_STATS for the output statistics
Colamd returns FALSE is memory is insufficient, or TRUE otherwise.
On input, the caller must specify:
n_row the number of rows of A
n_col the number of columns of A
Alen the size of the array A
A [0 ... nnz-1] the row indices, where nnz = p [n_col]
A [nnz ... Alen-1] (need not be initialized by the user)
p [0 ... n_col] the column pointers, p [0] = 0, and p [n_col]
is the number of entries in A. Column c of A
is stored in A [p [c] ... p [c+1]-1].
knobs [0 ... 19] a set of parameters that control the behavior
of colamd. If knobs is a NULL pointer the
defaults are used. The user-callable
colamd_set_defaults routine sets the default
parameters. See that routine for a description
of the user-controllable parameters.
If the return value of Colamd is TRUE, then on output:
p [0 ... n_col-1] the column permutation. p [0] is the first
column index, and p [n_col-1] is the last.
That is, p [k] = j means that column j of A
is the kth column of AQ.
A is undefined on output (the matrix pattern is
destroyed), except for the following statistics:
A [0] the number of dense (or empty) rows ignored
A [1] the number of dense (or empty) columms. These
are ordered last, in their natural order.
A [2] the number of garbage collections performed.
If this is excessive, then you would have
gotten your results faster if Alen was larger.
A [3] 0, if all row indices in each column were in
sorted order and no duplicates were present.
1, if there were unsorted or duplicate row
indices in the input. You would have gotten
your results faster if A [3] was returned as 0.
If the return value of Colamd is FALSE, then A and p are undefined on
output.
*/
PUBLIC int colamd /* returns TRUE if successful */
(
/* === Parameters ======================================================= */
int n_row, /* number of rows in A */
int n_col, /* number of columns in A */
int Alen, /* length of A */
int A [], /* row indices of A */
int p [], /* pointers to columns in A */
double knobs [COLAMD_KNOBS] /* parameters (uses defaults if NULL) */
)
{
/* === Local variables ================================================== */
int i ; /* loop index */
int nnz ; /* nonzeros in A */
int Row_size ; /* size of Row [], in integers */
int Col_size ; /* size of Col [], in integers */
int elbow_room ; /* remaining free space */
RowInfo *Row ; /* pointer into A of Row [0..n_row] array */
ColInfo *Col ; /* pointer into A of Col [0..n_col] array */
int n_col2 ; /* number of non-dense, non-empty columns */
int n_row2 ; /* number of non-dense, non-empty rows */
int ngarbage ; /* number of garbage collections performed */
int max_deg ; /* maximum row degree */
double default_knobs [COLAMD_KNOBS] ; /* default knobs knobs array */
int init_result ; /* return code from initialization */
#ifndef NDEBUG
debug_colamd = 0 ; /* no debug printing */
/* get "D" environment variable, which gives the debug printing level */
if (getenv ("D")) debug_colamd = atoi (getenv ("D")) ;
DEBUG0 (("debug version, D = %d (THIS WILL BE SLOOOOW!)\n", debug_colamd)) ;
#endif
/* === Check the input arguments ======================================== */
if (n_row < 0 || n_col < 0 || !A || !p)
{
/* n_row and n_col must be non-negative, A and p must be present */
DEBUG0 (("colamd error! %d %d %d\n", n_row, n_col, Alen)) ;
return (FALSE) ;
}
nnz = p [n_col] ;
if (nnz < 0 || p [0] != 0)
{
/* nnz must be non-negative, and p [0] must be zero */
DEBUG0 (("colamd error! %d %d\n", nnz, p [0])) ;
return (FALSE) ;
}
/* === If no knobs, set default parameters ============================== */
if (!knobs)
{
knobs = default_knobs ;
colamd_set_defaults (knobs) ;
}
/* === Allocate the Row and Col arrays from array A ===================== */
Col_size = (n_col + 1) * sizeof (ColInfo) / sizeof (int) ;
Row_size = (n_row + 1) * sizeof (RowInfo) / sizeof (int) ;
elbow_room = Alen - (2*nnz + Col_size + Row_size) ;
if (elbow_room < n_col + COLAMD_STATS)
{
/* not enough space in array A to perform the ordering */
DEBUG0 (("colamd error! elbow_room %d, %d\n", elbow_room,n_col)) ;
return (FALSE) ;
}
Alen = 2*nnz + elbow_room ;
Col = (ColInfo *) &A [Alen] ;
Row = (RowInfo *) &A [Alen + Col_size] ;
/* === Construct the row and column data structures ===================== */
init_result = init_rows_cols (n_row, n_col, Row, Col, A, p) ;
if (init_result == -1)
{
/* input matrix is invalid */
DEBUG0 (("colamd error! matrix invalid\n")) ;
return (FALSE) ;
}
/* === Initialize scores, kill dense rows/columns ======================= */
init_scoring (n_row, n_col, Row, Col, A, p, knobs,
&n_row2, &n_col2, &max_deg) ;
/* === Order the supercolumns =========================================== */
ngarbage = find_ordering (n_row, n_col, Alen, Row, Col, A, p,
n_col2, max_deg, 2*nnz) ;
/* === Order the non-principal columns ================================== */
order_children (n_col, Col, p) ;
/* === Return statistics in A =========================================== */
for (i = 0 ; i < COLAMD_STATS ; i++)
{
A [i] = 0 ;
}
A [COLAMD_DENSE_ROW] = n_row - n_row2 ;
A [COLAMD_DENSE_COL] = n_col - n_col2 ;
A [COLAMD_DEFRAG_COUNT] = ngarbage ;
A [COLAMD_JUMBLED_COLS] = init_result ;
return (TRUE) ;
}
/* ========================================================================== */
/* === NON-USER-CALLABLE ROUTINES: ========================================== */
/* ========================================================================== */
/* There are no user-callable routines beyond this point in the file */
/* ========================================================================== */
/* === init_rows_cols ======================================================= */
/* ========================================================================== */
/*
Takes the column form of the matrix in A and creates the row form of the
matrix. Also, row and column attributes are stored in the Col and Row
structs. If the columns are un-sorted or contain duplicate row indices,
this routine will also sort and remove duplicate row indices from the
column form of the matrix. Returns -1 on error, 1 if columns jumbled,
or 0 if columns not jumbled. Not user-callable.
*/
PRIVATE int init_rows_cols /* returns status code */
(
/* === Parameters ======================================================= */
int n_row, /* number of rows of A */
int n_col, /* number of columns of A */
RowInfo Row [], /* of size n_row+1 */
ColInfo Col [], /* of size n_col+1 */
int A [], /* row indices of A, of size Alen */
int p [] /* pointers to columns in A, of size n_col+1 */
)
{
/* === Local variables ================================================== */
int col ; /* a column index */
int row ; /* a row index */
int *cp ; /* a column pointer */
int *cp_end ; /* a pointer to the end of a column */
int *rp ; /* a row pointer */
int *rp_end ; /* a pointer to the end of a row */
int last_start ; /* start index of previous column in A */
int start ; /* start index of column in A */
int last_row ; /* previous row */
int jumbled_columns ; /* indicates if columns are jumbled */
/* === Initialize columns, and check column pointers ==================== */
last_start = 0 ;
for (col = 0 ; col < n_col ; col++)
{
start = p [col] ;
if (start < last_start)
{
/* column pointers must be non-decreasing */
DEBUG0 (("colamd error! last p %d p [col] %d\n",last_start,start));
return (-1) ;
}
Col [col].start = start ;
Col [col].length = p [col+1] - start ;
Col [col].shared1.thickness = 1 ;
Col [col].shared2.score = 0 ;
Col [col].shared3.prev = EMPTY ;
Col [col].shared4.degree_next = EMPTY ;
last_start = start ;
}
/* must check the end pointer for last column */
if (p [n_col] < last_start)
{
/* column pointers must be non-decreasing */
DEBUG0 (("colamd error! last p %d p [n_col] %d\n",p[col],last_start)) ;
return (-1) ;
}
/* p [0..n_col] no longer needed, used as "head" in subsequent routines */
/* === Scan columns, compute row degrees, and check row indices ========= */
jumbled_columns = FALSE ;
for (row = 0 ; row < n_row ; row++)
{
Row [row].length = 0 ;
Row [row].shared2.mark = -1 ;
}
for (col = 0 ; col < n_col ; col++)
{
last_row = -1 ;
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
/* make sure row indices within range */
if (row < 0 || row >= n_row)
{
DEBUG0 (("colamd error! col %d row %d last_row %d\n",
col, row, last_row)) ;
return (-1) ;
}
else if (row <= last_row)
{
/* row indices are not sorted or repeated, thus cols */
/* are jumbled */
jumbled_columns = TRUE ;
}
/* prevent repeated row from being counted */
if (Row [row].shared2.mark != col)
{
Row [row].length++ ;
Row [row].shared2.mark = col ;
last_row = row ;
}
else
{
/* this is a repeated entry in the column, */
/* it will be removed */
Col [col].length-- ;
}
}
}
/* === Compute row pointers ============================================= */
/* row form of the matrix starts directly after the column */
/* form of matrix in A */
Row [0].start = p [n_col] ;
Row [0].shared1.p = Row [0].start ;
Row [0].shared2.mark = -1 ;
for (row = 1 ; row < n_row ; row++)
{
Row [row].start = Row [row-1].start + Row [row-1].length ;
Row [row].shared1.p = Row [row].start ;
Row [row].shared2.mark = -1 ;
}
/* === Create row form ================================================== */
if (jumbled_columns)
{
/* if cols jumbled, watch for repeated row indices */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
row = *cp++ ;
if (Row [row].shared2.mark != col)
{
A [(Row [row].shared1.p)++] = col ;
Row [row].shared2.mark = col ;
}
}
}
}
else
{
/* if cols not jumbled, we don't need the mark (this is faster) */
for (col = 0 ; col < n_col ; col++)
{
cp = &A [p [col]] ;
cp_end = &A [p [col+1]] ;
while (cp < cp_end)
{
A [(Row [*cp++].shared1.p)++] = col ;
}
}
}
/* === Clear the row marks and set row degrees ========================== */
for (row = 0 ; row < n_row ; row++)
{
Row [row].shared2.mark = 0 ;
Row [row].shared1.degree = Row [row].length ;
}
/* === See if we need to re-create columns ============================== */
if (jumbled_columns)
{
#ifndef NDEBUG
/* make sure column lengths are correct */
for (col = 0 ; col < n_col ; col++)
{
p [col] = Col [col].length ;
}
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
p [*rp++]-- ;
}
}
for (col = 0 ; col < n_col ; col++)
{
assert (p [col] == 0) ;
}
/* now p is all zero (different than when debugging is turned off) */
#endif
/* === Compute col pointers ========================================= */
/* col form of the matrix starts at A [0]. */
/* Note, we may have a gap between the col form and the row */
/* form if there were duplicate entries, if so, it will be */
/* removed upon the first garbage collection */
Col [0].start = 0 ;
p [0] = Col [0].start ;
for (col = 1 ; col < n_col ; col++)
{
/* note that the lengths here are for pruned columns, i.e. */
/* no duplicate row indices will exist for these columns */
Col [col].start = Col [col-1].start + Col [col-1].length ;
p [col] = Col [col].start ;
}
/* === Re-create col form =========================================== */
for (row = 0 ; row < n_row ; row++)
{
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
A [(p [*rp++])++] = row ;
}
}
return (1) ;
}
else
{
/* no columns jumbled (this is faster) */
return (0) ;
}
}
/* ========================================================================== */
/* === init_scoring ========================================================= */
/* ========================================================================== */
/*
Kills dense or empty columns and rows, calculates an initial score for
each column, and places all columns in the degree lists. Not user-callable.
*/
PRIVATE void init_scoring
(
/* === Parameters ======================================================= */
int n_row, /* number of rows of A */
int n_col, /* number of columns of A */
RowInfo Row [], /* of size n_row+1 */
ColInfo Col [], /* of size n_col+1 */
int A [], /* column form and row form of A */
int head [], /* of size n_col+1 */
double knobs [COLAMD_KNOBS],/* parameters */
int *p_n_row2, /* number of non-dense, non-empty rows */
int *p_n_col2, /* number of non-dense, non-empty columns */
int *p_max_deg /* maximum row degree */
)
{
/* === Local variables ================================================== */
int c ; /* a column index */
int r, row ; /* a row index */
int *cp ; /* a column pointer */
int deg ; /* degree (# entries) of a row or column */
int *cp_end ; /* a pointer to the end of a column */
int *new_cp ; /* new column pointer */
int col_length ; /* length of pruned column */
int score ; /* current column score */
int n_col2 ; /* number of non-dense, non-empty columns */
int n_row2 ; /* number of non-dense, non-empty rows */
int dense_row_count ; /* remove rows with more entries than this */
int dense_col_count ; /* remove cols with more entries than this */
int min_score ; /* smallest column score */
int max_deg ; /* maximum row degree */
int next_col ; /* Used to add to degree list.*/
#ifndef NDEBUG
int debug_count ; /* debug only. */
#endif
/* === Extract knobs ==================================================== */
dense_row_count = MAX (0, MIN (knobs [COLAMD_DENSE_ROW] * n_col, n_col)) ;
dense_col_count = MAX (0, MIN (knobs [COLAMD_DENSE_COL] * n_row, n_row)) ;
DEBUG0 (("densecount: %d %d\n", dense_row_count, dense_col_count)) ;
max_deg = 0 ;
n_col2 = n_col ;
n_row2 = n_row ;
/* === Kill empty columns =============================================== */
/* Put the empty columns at the end in their natural, so that LU */
/* factorization can proceed as far as possible. */
for (c = n_col-1 ; c >= 0 ; c--)
{
deg = Col [c].length ;
if (deg == 0)
{
/* this is a empty column, kill and order it last */
Col [c].shared2.order = --n_col2 ;
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG0 (("null columns killed: %d\n", n_col - n_col2)) ;
/* === Kill dense columns =============================================== */
/* Put the dense columns at the end, in their natural order */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip any dead columns */
if (COL_IS_DEAD (c))
{
continue ;
}
deg = Col [c].length ;
if (deg > dense_col_count)
{
/* this is a dense column, kill and order it last */
Col [c].shared2.order = --n_col2 ;
/* decrement the row degrees */
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
Row [*cp++].shared1.degree-- ;
}
KILL_PRINCIPAL_COL (c) ;
}
}
DEBUG0 (("Dense and null columns killed: %d\n", n_col - n_col2)) ;
/* === Kill dense and empty rows ======================================== */
for (r = 0 ; r < n_row ; r++)
{
deg = Row [r].shared1.degree ;
assert (deg >= 0 && deg <= n_col) ;
if (deg > dense_row_count || deg == 0)
{
/* kill a dense or empty row */
KILL_ROW (r) ;
--n_row2 ;
}
else
{
/* keep track of max degree of remaining rows */
max_deg = MAX (max_deg, deg) ;
}
}
DEBUG0 (("Dense and null rows killed: %d\n", n_row - n_row2)) ;
/* === Compute initial column scores ==================================== */
/* At this point the row degrees are accurate. They reflect the number */
/* of "live" (non-dense) columns in each row. No empty rows exist. */
/* Some "live" columns may contain only dead rows, however. These are */
/* pruned in the code below. */
/* now find the initial matlab score for each column */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* skip dead column */
if (COL_IS_DEAD (c))
{
continue ;
}
score = 0 ;
cp = &A [Col [c].start] ;
new_cp = cp ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
/* skip if dead */
if (ROW_IS_DEAD (row))
{
continue ;
}
/* compact the column */
*new_cp++ = row ;
/* add row's external degree */
score += Row [row].shared1.degree - 1 ;
/* guard against integer overflow */
score = MIN (score, n_col) ;
}
/* determine pruned column length */
col_length = (int) (new_cp - &A [Col [c].start]) ;
if (col_length == 0)
{
/* a newly-made null column (all rows in this col are "dense" */
/* and have already been killed) */
DEBUG0 (("Newly null killed: %d\n", c)) ;
Col [c].shared2.order = --n_col2 ;
KILL_PRINCIPAL_COL (c) ;
}
else
{
/* set column length and set score */
assert (score >= 0) ;
assert (score <= n_col) ;
Col [c].length = col_length ;
Col [c].shared2.score = score ;
}
}
DEBUG0 (("Dense, null, and newly-null columns killed: %d\n",n_col-n_col2)) ;
/* At this point, all empty rows and columns are dead. All live columns */
/* are "clean" (containing no dead rows) and simplicial (no supercolumns */
/* yet). Rows may contain dead columns, but all live rows contain at */
/* least one live column. */
#ifndef NDEBUG
debug_structures (n_row, n_col, Row, Col, A, n_col2) ;
#endif
/* === Initialize degree lists ========================================== */
#ifndef NDEBUG
debug_count = 0 ;
#endif
/* clear the hash buckets */
for (c = 0 ; c <= n_col ; c++)
{
head [c] = EMPTY ;
}
min_score = n_col ;
/* place in reverse order, so low column indices are at the front */
/* of the lists. This is to encourage natural tie-breaking */
for (c = n_col-1 ; c >= 0 ; c--)
{
/* only add principal columns to degree lists */
if (COL_IS_ALIVE (c))
{
DEBUG4 (("place %d score %d minscore %d ncol %d\n",
c, Col [c].shared2.score, min_score, n_col)) ;
/* === Add columns score to DList =============================== */
score = Col [c].shared2.score ;
assert (min_score >= 0) ;
assert (min_score <= n_col) ;
assert (score >= 0) ;
assert (score <= n_col) ;
assert (head [score] >= EMPTY) ;
/* now add this column to dList at proper score location */
next_col = head [score] ;
Col [c].shared3.prev = EMPTY ;
Col [c].shared4.degree_next = next_col ;
/* if there already was a column with the same score, set its */
/* previous pointer to this new column */
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = c ;
}
head [score] = c ;
/* see if this score is less than current min */
min_score = MIN (min_score, score) ;
#ifndef NDEBUG
debug_count++ ;
#endif
}
}
#ifndef NDEBUG
DEBUG0 (("Live cols %d out of %d, non-princ: %d\n",
debug_count, n_col, n_col-debug_count)) ;
assert (debug_count == n_col2) ;
debug_deg_lists (n_row, n_col, Row, Col, head, min_score, n_col2, max_deg) ;
#endif
/* === Return number of remaining columns, and max row degree =========== */
*p_n_col2 = n_col2 ;
*p_n_row2 = n_row2 ;
*p_max_deg = max_deg ;
}
/* ========================================================================== */
/* === find_ordering ======================================================== */
/* ========================================================================== */
/*
Order the principal columns of the supercolumn form of the matrix
(no supercolumns on input). Uses a minimum approximate column minimum
degree ordering method. Not user-callable.
*/
PRIVATE int find_ordering /* return the number of garbage collections */
(
/* === Parameters ======================================================= */
int n_row, /* number of rows of A */
int n_col, /* number of columns of A */
int Alen, /* size of A, 2*nnz + elbow_room or larger */
RowInfo Row [], /* of size n_row+1 */
ColInfo Col [], /* of size n_col+1 */
int A [], /* column form and row form of A */
int head [], /* of size n_col+1 */
int n_col2, /* Remaining columns to order */
int max_deg, /* Maximum row degree */
int pfree /* index of first free slot (2*nnz on entry) */
)
{
/* === Local variables ================================================== */
int k ; /* current pivot ordering step */
int pivot_col ; /* current pivot column */
int *cp ; /* a column pointer */
int *rp ; /* a row pointer */
int pivot_row ; /* current pivot row */
int *new_cp ; /* modified column pointer */
int *new_rp ; /* modified row pointer */
int pivot_row_start ; /* pointer to start of pivot row */
int pivot_row_degree ; /* # of columns in pivot row */
int pivot_row_length ; /* # of supercolumns in pivot row */
int pivot_col_score ; /* score of pivot column */
int needed_memory ; /* free space needed for pivot row */
int *cp_end ; /* pointer to the end of a column */
int *rp_end ; /* pointer to the end of a row */
int row ; /* a row index */
int col ; /* a column index */
int max_score ; /* maximum possible score */
int cur_score ; /* score of current column */
unsigned int hash ; /* hash value for supernode detection */
int head_column ; /* head of hash bucket */
int first_col ; /* first column in hash bucket */
int tag_mark ; /* marker value for mark array */
int row_mark ; /* Row [row].shared2.mark */
int set_difference ; /* set difference size of row with pivot row */
int min_score ; /* smallest column score */
int col_thickness ; /* "thickness" (# of columns in a supercol) */
int max_mark ; /* maximum value of tag_mark */
int pivot_col_thickness ; /* number of columns represented by pivot col */
int prev_col ; /* Used by Dlist operations. */
int next_col ; /* Used by Dlist operations. */
int ngarbage ; /* number of garbage collections performed */
#ifndef NDEBUG
int debug_d ; /* debug loop counter */
int debug_step = 0 ; /* debug loop counter */
#endif
/* === Initialization and clear mark ==================================== */
max_mark = INT_MAX - n_col ; /* INT_MAX defined in <limits.h> */
tag_mark = clear_mark (n_row, Row) ;
min_score = 0 ;
ngarbage = 0 ;
DEBUG0 (("Ordering.. n_col2=%d\n", n_col2)) ;
/* === Order the columns ================================================ */
for (k = 0 ; k < n_col2 ; /* 'k' is incremented below */)
{
#ifndef NDEBUG
if (debug_step % 100 == 0)
{
DEBUG0 (("\n... Step k: %d out of n_col2: %d\n", k, n_col2)) ;
}
else
{
DEBUG1 (("\n----------Step k: %d out of n_col2: %d\n", k, n_col2)) ;
}
debug_step++ ;
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k, max_deg) ;
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif
/* === Select pivot column, and order it ============================ */
/* make sure degree list isn't empty */
assert (min_score >= 0) ;
assert (min_score <= n_col) ;
assert (head [min_score] >= EMPTY) ;
#ifndef NDEBUG
for (debug_d = 0 ; debug_d < min_score ; debug_d++)
{
assert (head [debug_d] == EMPTY) ;
}
#endif
/* get pivot column from head of minimum degree list */
while (head [min_score] == EMPTY && min_score < n_col)
{
min_score++ ;
}
pivot_col = head [min_score] ;
assert (pivot_col >= 0 && pivot_col <= n_col) ;
next_col = Col [pivot_col].shared4.degree_next ;
head [min_score] = next_col ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = EMPTY ;
}
assert (COL_IS_ALIVE (pivot_col)) ;
DEBUG3 (("Pivot col: %d\n", pivot_col)) ;
/* remember score for defrag check */
pivot_col_score = Col [pivot_col].shared2.score ;
/* the pivot column is the kth column in the pivot order */
Col [pivot_col].shared2.order = k ;
/* increment order count by column thickness */
pivot_col_thickness = Col [pivot_col].shared1.thickness ;
k += pivot_col_thickness ;
assert (pivot_col_thickness > 0) ;
/* === Garbage_collection, if necessary ============================= */
needed_memory = MIN (pivot_col_score, n_col - k) ;
if (pfree + needed_memory >= Alen)
{
pfree = garbage_collection (n_row, n_col, Row, Col, A, &A [pfree]) ;
ngarbage++ ;
/* after garbage collection we will have enough */
assert (pfree + needed_memory < Alen) ;
/* garbage collection has wiped out the Row[].shared2.mark array */
tag_mark = clear_mark (n_row, Row) ;
#ifndef NDEBUG
debug_matrix (n_row, n_col, Row, Col, A) ;
#endif
}
/* === Compute pivot row pattern ==================================== */
/* get starting location for this new merged row */
pivot_row_start = pfree ;
/* initialize new row counts to zero */
pivot_row_degree = 0 ;
/* tag pivot column as having been visited so it isn't included */
/* in merged pivot row */
Col [pivot_col].shared1.thickness = -pivot_col_thickness ;
/* pivot row is the union of all rows in the pivot column pattern */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
DEBUG4 (("Pivot col pattern %d %d\n", ROW_IS_ALIVE (row), row)) ;
/* skip if row is dead */
if (ROW_IS_DEAD (row))
{
continue ;
}
rp = &A [Row [row].start] ;
rp_end = rp + Row [row].length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
/* add the column, if alive and untagged */
col_thickness = Col [col].shared1.thickness ;
if (col_thickness > 0 && COL_IS_ALIVE (col))
{
/* tag column in pivot row */
Col [col].shared1.thickness = -col_thickness ;
assert (pfree < Alen) ;
/* place column in pivot row */
A [pfree++] = col ;
pivot_row_degree += col_thickness ;
}
}
}
/* clear tag on pivot column */
Col [pivot_col].shared1.thickness = pivot_col_thickness ;
max_deg = MAX (max_deg, pivot_row_degree) ;
#ifndef NDEBUG
DEBUG3 (("check2\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif
/* === Kill all rows used to construct pivot row ==================== */
/* also kill pivot row, temporarily */
cp = &A [Col [pivot_col].start] ;
cp_end = cp + Col [pivot_col].length ;
while (cp < cp_end)
{
/* may be killing an already dead row */
row = *cp++ ;
DEBUG2 (("Kill row in pivot col: %d\n", row)) ;
KILL_ROW (row) ;
}
/* === Select a row index to use as the new pivot row =============== */
pivot_row_length = pfree - pivot_row_start ;
if (pivot_row_length > 0)
{
/* pick the "pivot" row arbitrarily (first row in col) */
pivot_row = A [Col [pivot_col].start] ;
DEBUG2 (("Pivotal row is %d\n", pivot_row)) ;
}
else
{
/* there is no pivot row, since it is of zero length */
pivot_row = EMPTY ;
assert (pivot_row_length == 0) ;
}
assert (Col [pivot_col].length > 0 || pivot_row_length == 0) ;
/* === Approximate degree computation =============================== */
/* Here begins the computation of the approximate degree. The column */
/* score is the sum of the pivot row "length", plus the size of the */
/* set differences of each row in the column minus the pattern of the */
/* pivot row itself. The column ("thickness") itself is also */
/* excluded from the column score (we thus use an approximate */
/* external degree). */
/* The time taken by the following code (compute set differences, and */
/* add them up) is proportional to the size of the data structure */
/* being scanned - that is, the sum of the sizes of each column in */
/* the pivot row. Thus, the amortized time to compute a column score */
/* is proportional to the size of that column (where size, in this */
/* context, is the column "length", or the number of row indices */
/* in that column). The number of row indices in a column is */
/* monotonically non-decreasing, from the length of the original */
/* column on input to colamd. */
/* === Compute set differences ====================================== */
DEBUG1 (("** Computing set differences phase. **\n")) ;
/* pivot row is currently dead - it will be revived later. */
DEBUG2 (("Pivot row: ")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
assert (COL_IS_ALIVE (col) && col != pivot_col) ;
DEBUG2 (("Col: %d\n", col)) ;
/* clear tags used to construct pivot row pattern */
col_thickness = -Col [col].shared1.thickness ;
assert (col_thickness > 0) ;
Col [col].shared1.thickness = col_thickness ;
/* === Remove column from degree list =========================== */
cur_score = Col [col].shared2.score ;
prev_col = Col [col].shared3.prev ;
next_col = Col [col].shared4.degree_next ;
assert (cur_score >= 0) ;
assert (cur_score <= n_col) ;
assert (cur_score >= EMPTY) ;
if (prev_col == EMPTY)
{
head [cur_score] = next_col ;
}
else
{
Col [prev_col].shared4.degree_next = next_col ;
}
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = prev_col ;
}
/* === Scan the column ========================================== */
cp = &A [Col [col].start] ;
cp_end = cp + Col [col].length ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
continue ;
}
assert (row != pivot_row) ;
set_difference = row_mark - tag_mark ;
/* check if the row has been seen yet */
if (set_difference < 0)
{
assert (Row [row].shared1.degree <= max_deg) ;
set_difference = Row [row].shared1.degree ;
}
/* subtract column thickness from this row's set difference */
set_difference -= col_thickness ;
assert (set_difference >= 0) ;
/* absorb this row if the set difference becomes zero */
if (set_difference == 0)
{
DEBUG1 (("aggressive absorption. Row: %d\n", row)) ;
KILL_ROW (row) ;
}
else
{
/* save the new mark */
Row [row].shared2.mark = set_difference + tag_mark ;
}
}
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k-pivot_row_degree, max_deg) ;
#endif
/* === Add up set differences for each column ======================= */
DEBUG1 (("** Adding set differences phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
/* get a column */
col = *rp++ ;
assert (COL_IS_ALIVE (col) && col != pivot_col) ;
hash = 0 ;
cur_score = 0 ;
cp = &A [Col [col].start] ;
/* compact the column */
new_cp = cp ;
cp_end = cp + Col [col].length ;
DEBUG2 (("Adding set diffs for Col: %d.\n", col)) ;
while (cp < cp_end)
{
/* get a row */
row = *cp++ ;
assert(row >= 0 && row < n_row) ;
row_mark = Row [row].shared2.mark ;
/* skip if dead */
if (ROW_IS_MARKED_DEAD (row_mark))
{
continue ;
}
assert (row_mark > tag_mark) ;
/* compact the column */
*new_cp++ = row ;
/* compute hash function */
hash += row ;
/* add set difference */
cur_score += row_mark - tag_mark ;
/* integer overflow... */
cur_score = MIN (cur_score, n_col) ;
}
/* recompute the column's length */
Col [col].length = (int) (new_cp - &A [Col [col].start]) ;
/* === Further mass elimination ================================= */
if (Col [col].length == 0)
{
DEBUG1 (("further mass elimination. Col: %d\n", col)) ;
/* nothing left but the pivot row in this column */
KILL_PRINCIPAL_COL (col) ;
pivot_row_degree -= Col [col].shared1.thickness ;
assert (pivot_row_degree >= 0) ;
/* order it */
Col [col].shared2.order = k ;
/* increment order count by column thickness */
k += Col [col].shared1.thickness ;
}
else
{
/* === Prepare for supercolumn detection ==================== */
DEBUG2 (("Preparing supercol detection for Col: %d.\n", col)) ;
/* save score so far */
Col [col].shared2.score = cur_score ;
/* add column to hash table, for supercolumn detection */
hash %= n_col + 1 ;
DEBUG2 ((" Hash = %d, n_col = %d.\n", hash, n_col)) ;
assert (hash <= n_col) ;
head_column = head [hash] ;
if (head_column > EMPTY)
{
/* degree list "hash" is non-empty, use prev (shared3) of */
/* first column in degree list as head of hash bucket */
first_col = Col [head_column].shared3.headhash ;
Col [head_column].shared3.headhash = col ;
}
else
{
/* degree list "hash" is empty, use head as hash bucket */
first_col = - (head_column + 2) ;
head [hash] = - (col + 2) ;
}
Col [col].shared4.hash_next = first_col ;
/* save hash function in Col [col].shared3.hash */
Col [col].shared3.hash = (int) hash ;
assert (COL_IS_ALIVE (col)) ;
}
}
/* The approximate external column degree is now computed. */
/* === Supercolumn detection ======================================== */
DEBUG1 (("** Supercolumn detection phase. **\n")) ;
detect_super_cols (
#ifndef NDEBUG
n_col, Row,
#endif
Col, A, head, pivot_row_start, pivot_row_length) ;
/* === Kill the pivotal column ====================================== */
KILL_PRINCIPAL_COL (pivot_col) ;
/* === Clear mark =================================================== */
tag_mark += (max_deg + 1) ;
if (tag_mark >= max_mark)
{
DEBUG1 (("clearing tag_mark\n")) ;
tag_mark = clear_mark (n_row, Row) ;
}
#ifndef NDEBUG
DEBUG3 (("check3\n")) ;
debug_mark (n_row, Row, tag_mark, max_mark) ;
#endif
/* === Finalize the new pivot row, and column scores ================ */
DEBUG1 (("** Finalize scores phase. **\n")) ;
/* for each column in pivot row */
rp = &A [pivot_row_start] ;
/* compact the pivot row */
new_rp = rp ;
rp_end = rp + pivot_row_length ;
while (rp < rp_end)
{
col = *rp++ ;
/* skip dead columns */
if (COL_IS_DEAD (col))
{
continue ;
}
*new_rp++ = col ;
/* add new pivot row to column */
A [Col [col].start + (Col [col].length++)] = pivot_row ;
/* retrieve score so far and add on pivot row's degree. */
/* (we wait until here for this in case the pivot */
/* row's degree was reduced due to mass elimination). */
cur_score = Col [col].shared2.score + pivot_row_degree ;
/* calculate the max possible score as the number of */
/* external columns minus the 'k' value minus the */
/* columns thickness */
max_score = n_col - k - Col [col].shared1.thickness ;
/* make the score the external degree of the union-of-rows */
cur_score -= Col [col].shared1.thickness ;
/* make sure score is less or equal than the max score */
cur_score = MIN (cur_score, max_score) ;
assert (cur_score >= 0) ;
/* store updated score */
Col [col].shared2.score = cur_score ;
/* === Place column back in degree list ========================= */
assert (min_score >= 0) ;
assert (min_score <= n_col) ;
assert (cur_score >= 0) ;
assert (cur_score <= n_col) ;
assert (head [cur_score] >= EMPTY) ;
next_col = head [cur_score] ;
Col [col].shared4.degree_next = next_col ;
Col [col].shared3.prev = EMPTY ;
if (next_col != EMPTY)
{
Col [next_col].shared3.prev = col ;
}
head [cur_score] = col ;
/* see if this score is less than current min */
min_score = MIN (min_score, cur_score) ;
}
#ifndef NDEBUG
debug_deg_lists (n_row, n_col, Row, Col, head,
min_score, n_col2-k, max_deg) ;
#endif
/* === Resurrect the new pivot row ================================== */
if (pivot_row_degree > 0)
{
/* update pivot row length to reflect any cols that were killed */
/* during super-col detection and mass elimination */
Row [pivot_row].start = pivot_row_start ;
Row [pivot_row].length = (int) (new_rp - &A[pivot_row_start]) ;
Row [pivot_row].shared1.degree = pivot_row_degree ;
Row [pivot_row].shared2.mark = 0 ;
/* pivot row is no longer dead */
}
}
/* === All principal columns have now been ordered ====================== */
return (ngarbage) ;
}
/* ========================================================================== */
/* === order_children ======================================================= */
/* ========================================================================== */
/*
The find_ordering routine has ordered all of the principal columns (the
representatives of the supercolumns). The non-principal columns have not
yet been ordered. This routine orders those columns by walking up the
parent tree (a column is a child of the column which absorbed it). The
final permutation vector is then placed in p [0 ... n_col-1], with p [0]
being the first column, and p [n_col-1] being the last. It doesn't look
like it at first glance, but be assured that this routine takes time linear
in the number of columns. Although not immediately obvious, the time
taken by this routine is O (n_col), that is, linear in the number of
columns. Not user-callable.
*/
PRIVATE void order_children
(
/* === Parameters ======================================================= */
int n_col, /* number of columns of A */
ColInfo Col [], /* of size n_col+1 */
int p [] /* p [0 ... n_col-1] is the column permutation*/
)
{
/* === Local variables ================================================== */
int i ; /* loop counter for all columns */
int c ; /* column index */
int parent ; /* index of column's parent */
int order ; /* column's order */
/* === Order each non-principal column ================================== */
for (i = 0 ; i < n_col ; i++)
{
/* find an un-ordered non-principal column */
assert (COL_IS_DEAD (i)) ;
if (!COL_IS_DEAD_PRINCIPAL (i) && Col [i].shared2.order == EMPTY)
{
parent = i ;
/* once found, find its principal parent */
do
{
parent = Col [parent].shared1.parent ;
} while (!COL_IS_DEAD_PRINCIPAL (parent)) ;
/* now, order all un-ordered non-principal columns along path */
/* to this parent. collapse tree at the same time */
c = i ;
/* get order of parent */
order = Col [parent].shared2.order ;
do
{
assert (Col [c].shared2.order == EMPTY) ;
/* order this column */
Col [c].shared2.order = order++ ;
/* collaps tree */
Col [c].shared1.parent = parent ;
/* get immediate parent of this column */
c = Col [c].shared1.parent ;
/* continue until we hit an ordered column. There are */
/* guarranteed not to be anymore unordered columns */
/* above an ordered column */
} while (Col [c].shared2.order == EMPTY) ;
/* re-order the super_col parent to largest order for this group */
Col [parent].shared2.order = order ;
}
}
/* === Generate the permutation ========================================= */
for (c = 0 ; c < n_col ; c++)
{
p [Col [c].shared2.order] = c ;
}
}
/* ========================================================================== */
/* === detect_super_cols ==================================================== */
/* ========================================================================== */
/*
Detects supercolumns by finding matches between columns in the hash buckets.
Check amongst columns in the set A [row_start ... row_start + row_length-1].
The columns under consideration are currently *not* in the degree lists,
and have already been placed in the hash buckets.
The hash bucket for columns whose hash function is equal to h is stored
as follows:
if head [h] is >= 0, then head [h] contains a degree list, so:
head [h] is the first column in degree bucket h.
Col [head [h]].headhash gives the first column in hash bucket h.
otherwise, the degree list is empty, and:
-(head [h] + 2) is the first column in hash bucket h.
For a column c in a hash bucket, Col [c].shared3.prev is NOT a "previous
column" pointer. Col [c].shared3.hash is used instead as the hash number
for that column. The value of Col [c].shared4.hash_next is the next column
in the same hash bucket.
Assuming no, or "few" hash collisions, the time taken by this routine is
linear in the sum of the sizes (lengths) of each column whose score has
just been computed in the approximate degree computation.
Not user-callable.
*/
PRIVATE void detect_super_cols
(
/* === Parameters ======================================================= */
#ifndef NDEBUG
/* these two parameters are only needed when debugging is enabled: */
int n_col, /* number of columns of A */
RowInfo Row [], /* of size n_row+1 */
#endif
ColInfo Col [], /* of size n_col+1 */
int A [], /* row indices of A */
int head [], /* head of degree lists and hash buckets */
int row_start, /* pointer to set of columns to check */
int row_length /* number of columns to check */
)
{
/* === Local variables ================================================== */
int hash ; /* hash # for a column */
int *rp ; /* pointer to a row */
int c ; /* a column index */
int super_c ; /* column index of the column to absorb into */
int *cp1 ; /* column pointer for column super_c */
int *cp2 ; /* column pointer for column c */
int length ; /* length of column super_c */
int prev_c ; /* column preceding c in hash bucket */
int i ; /* loop counter */
int *rp_end ; /* pointer to the end of the row */
int col ; /* a column index in the row to check */
int head_column ; /* first column in hash bucket or degree list */
int first_col ; /* first column in hash bucket */
/* === Consider each column in the row ================================== */
rp = &A [row_start] ;
rp_end = rp + row_length ;
while (rp < rp_end)
{
col = *rp++ ;
if (COL_IS_DEAD (col))
{
continue ;
}
/* get hash number for this column */
hash = Col [col].shared3.hash ;
assert (hash <= n_col) ;
/* === Get the first column in this hash bucket ===================== */
head_column = head [hash] ;
if (head_column > EMPTY)
{
first_col = Col [head_column].shared3.headhash ;
}
else
{
first_col = - (head_column + 2) ;
}
/* === Consider each column in the hash bucket ====================== */
for (super_c = first_col ; super_c != EMPTY ;
super_c = Col [super_c].shared4.hash_next)
{
assert (COL_IS_ALIVE (super_c)) ;
assert (Col [super_c].shared3.hash == hash) ;
length = Col [super_c].length ;
/* prev_c is the column preceding column c in the hash bucket */
prev_c = super_c ;
/* === Compare super_c with all columns after it ================ */
for (c = Col [super_c].shared4.hash_next ;
c != EMPTY ; c = Col [c].shared4.hash_next)
{
assert (c != super_c) ;
assert (COL_IS_ALIVE (c)) ;
assert (Col [c].shared3.hash == hash) ;
/* not identical if lengths or scores are different */
if (Col [c].length != length ||
Col [c].shared2.score != Col [super_c].shared2.score)
{
prev_c = c ;
continue ;
}
/* compare the two columns */
cp1 = &A [Col [super_c].start] ;
cp2 = &A [Col [c].start] ;
for (i = 0 ; i < length ; i++)
{
/* the columns are "clean" (no dead rows) */
assert (ROW_IS_ALIVE (*cp1)) ;
assert (ROW_IS_ALIVE (*cp2)) ;
/* row indices will same order for both supercols, */
/* no gather scatter nessasary */
if (*cp1++ != *cp2++)
{
break ;
}
}
/* the two columns are different if the for-loop "broke" */
if (i != length)
{
prev_c = c ;
continue ;
}
/* === Got it! two columns are identical =================== */
assert (Col [c].shared2.score == Col [super_c].shared2.score) ;
Col [super_c].shared1.thickness += Col [c].shared1.thickness ;
Col [c].shared1.parent = super_c ;
KILL_NON_PRINCIPAL_COL (c) ;
/* order c later, in order_children() */
Col [c].shared2.order = EMPTY ;
/* remove c from hash bucket */
Col [prev_c].shared4.hash_next = Col [c].shared4.hash_next ;
}
}
/* === Empty this hash bucket ======================================= */
if (head_column > EMPTY)
{
/* corresponding degree list "hash" is not empty */
Col [head_column].shared3.headhash = EMPTY ;
}
else
{
/* corresponding degree list "hash" is empty */
head [hash] = EMPTY ;
}
}
}
/* ========================================================================== */
/* === garbage_collection =================================================== */
/* ========================================================================== */
/*
Defragments and compacts columns and rows in the workspace A. Used when
all avaliable memory has been used while performing row merging. Returns
the index of the first free position in A, after garbage collection. The
time taken by this routine is linear is the size of the array A, which is
itself linear in the number of nonzeros in the input matrix.
Not user-callable.
*/
PRIVATE int garbage_collection /* returns the new value of pfree */
(
/* === Parameters ======================================================= */
int n_row, /* number of rows */
int n_col, /* number of columns */
RowInfo Row [], /* row info */
ColInfo Col [], /* column info */
int A [], /* A [0 ... Alen-1] holds the matrix */
int *pfree /* &A [0] ... pfree is in use */
)
{
/* === Local variables ================================================== */
int *psrc ; /* source pointer */
int *pdest ; /* destination pointer */
int j ; /* counter */
int r ; /* a row index */
int c ; /* a column index */
int length ; /* length of a row or column */
#ifndef NDEBUG
int debug_rows ;
DEBUG0 (("Defrag..\n")) ;
for (psrc = &A[0] ; psrc < pfree ; psrc++) assert (*psrc >= 0) ;
debug_rows = 0 ;
#endif
/* === Defragment the columns =========================================== */
pdest = &A[0] ;
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
psrc = &A [Col [c].start] ;
/* move and compact the column */
assert (pdest <= psrc) ;
Col [c].start = (int) (pdest - &A [0]) ;
length = Col [c].length ;
for (j = 0 ; j < length ; j++)
{
r = *psrc++ ;
if (ROW_IS_ALIVE (r))
{
*pdest++ = r ;
}
}
Col [c].length = (int) (pdest - &A [Col [c].start]) ;
}
}
/* === Prepare to defragment the rows =================================== */
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
if (Row [r].length == 0)
{
/* this row is of zero length. cannot compact it, so kill it */
DEBUG0 (("Defrag row kill\n")) ;
KILL_ROW (r) ;
}
else
{
/* save first column index in Row [r].shared2.first_column */
psrc = &A [Row [r].start] ;
Row [r].shared2.first_column = *psrc ;
assert (ROW_IS_ALIVE (r)) ;
/* flag the start of the row with the one's complement of row */
*psrc = ONES_COMPLEMENT (r) ;
#ifndef NDEBUG
debug_rows++ ;
#endif
}
}
}
/* === Defragment the rows ============================================== */
psrc = pdest ;
while (psrc < pfree)
{
/* find a negative number ... the start of a row */
if (*psrc++ < 0)
{
psrc-- ;
/* get the row index */
r = ONES_COMPLEMENT (*psrc) ;
assert (r >= 0 && r < n_row) ;
/* restore first column index */
*psrc = Row [r].shared2.first_column ;
assert (ROW_IS_ALIVE (r)) ;
/* move and compact the row */
assert (pdest <= psrc) ;
Row [r].start = (int) (pdest - &A [0]) ;
length = Row [r].length ;
for (j = 0 ; j < length ; j++)
{
c = *psrc++ ;
if (COL_IS_ALIVE (c))
{
*pdest++ = c ;
}
}
Row [r].length = (int) (pdest - &A [Row [r].start]) ;
#ifndef NDEBUG
debug_rows-- ;
#endif
}
}
/* ensure we found all the rows */
assert (debug_rows == 0) ;
/* === Return the new value of pfree ==================================== */
return ((int) (pdest - &A [0])) ;
}
/* ========================================================================== */
/* === clear_mark =========================================================== */
/* ========================================================================== */
/*
Clears the Row [].shared2.mark array, and returns the new tag_mark.
Return value is the new tag_mark. Not user-callable.
*/
PRIVATE int clear_mark /* return the new value for tag_mark */
(
/* === Parameters ======================================================= */
int n_row, /* number of rows in A */
RowInfo Row [] /* Row [0 ... n_row-1].shared2.mark is set to zero */
)
{
/* === Local variables ================================================== */
int r ;
DEBUG0 (("Clear mark\n")) ;
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
Row [r].shared2.mark = 0 ;
}
}
return (1) ;
}
/* ========================================================================== */
/* === debugging routines =================================================== */
/* ========================================================================== */
/* When debugging is disabled, the remainder of this file is ignored. */
#ifndef NDEBUG
/* ========================================================================== */
/* === debug_structures ===================================================== */
/* ========================================================================== */
/*
At this point, all empty rows and columns are dead. All live columns
are "clean" (containing no dead rows) and simplicial (no supercolumns
yet). Rows may contain dead columns, but all live rows contain at
least one live column.
*/
PRIVATE void debug_structures
(
/* === Parameters ======================================================= */
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A [],
int n_col2
)
{
/* === Local variables ================================================== */
int i ;
int c ;
int *cp ;
int *cp_end ;
int len ;
int score ;
int r ;
int *rp ;
int *rp_end ;
int deg ;
/* === Check A, Row, and Col ============================================ */
for (c = 0 ; c < n_col ; c++)
{
if (COL_IS_ALIVE (c))
{
len = Col [c].length ;
score = Col [c].shared2.score ;
DEBUG4 (("initial live col %5d %5d %5d\n", c, len, score)) ;
assert (len > 0) ;
assert (score >= 0) ;
assert (Col [c].shared1.thickness == 1) ;
cp = &A [Col [c].start] ;
cp_end = cp + len ;
while (cp < cp_end)
{
r = *cp++ ;
assert (ROW_IS_ALIVE (r)) ;
}
}
else
{
i = Col [c].shared2.order ;
assert (i >= n_col2 && i < n_col) ;
}
}
for (r = 0 ; r < n_row ; r++)
{
if (ROW_IS_ALIVE (r))
{
i = 0 ;
len = Row [r].length ;
deg = Row [r].shared1.degree ;
assert (len > 0) ;
assert (deg > 0) ;
rp = &A [Row [r].start] ;
rp_end = rp + len ;
while (rp < rp_end)
{
c = *rp++ ;
if (COL_IS_ALIVE (c))
{
i++ ;
}
}
assert (i > 0) ;
}
}
}
/* ========================================================================== */
/* === debug_deg_lists ====================================================== */
/* ========================================================================== */
/*
Prints the contents of the degree lists. Counts the number of columns
in the degree list and compares it to the total it should have. Also
checks the row degrees.
*/
PRIVATE void debug_deg_lists
(
/* === Parameters ======================================================= */
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int head [],
int min_score,
int should,
int max_deg
)
{
/* === Local variables ================================================== */
int deg ;
int col ;
int have ;
int row ;
/* === Check the degree lists =========================================== */
if (n_col > 10000 && debug_colamd <= 0)
{
return ;
}
have = 0 ;
DEBUG4 (("Degree lists: %d\n", min_score)) ;
for (deg = 0 ; deg <= n_col ; deg++)
{
col = head [deg] ;
if (col == EMPTY)
{
continue ;
}
DEBUG4 (("%d:", deg)) ;
while (col != EMPTY)
{
DEBUG4 ((" %d", col)) ;
have += Col [col].shared1.thickness ;
assert (COL_IS_ALIVE (col)) ;
col = Col [col].shared4.degree_next ;
}
DEBUG4 (("\n")) ;
}
DEBUG4 (("should %d have %d\n", should, have)) ;
assert (should == have) ;
/* === Check the row degrees ============================================ */
if (n_row > 10000 && debug_colamd <= 0)
{
return ;
}
for (row = 0 ; row < n_row ; row++)
{
if (ROW_IS_ALIVE (row))
{
assert (Row [row].shared1.degree <= max_deg) ;
}
}
}
/* ========================================================================== */
/* === debug_mark =========================================================== */
/* ========================================================================== */
/*
Ensures that the tag_mark is less that the maximum and also ensures that
each entry in the mark array is less than the tag mark.
*/
PRIVATE void debug_mark
(
/* === Parameters ======================================================= */
int n_row,
RowInfo Row [],
int tag_mark,
int max_mark
)
{
/* === Local variables ================================================== */
int r ;
/* === Check the Row marks ============================================== */
assert (tag_mark > 0 && tag_mark <= max_mark) ;
if (n_row > 10000 && debug_colamd <= 0)
{
return ;
}
for (r = 0 ; r < n_row ; r++)
{
assert (Row [r].shared2.mark < tag_mark) ;
}
}
/* ========================================================================== */
/* === debug_matrix ========================================================= */
/* ========================================================================== */
/*
Prints out the contents of the columns and the rows.
*/
PRIVATE void debug_matrix
(
/* === Parameters ======================================================= */
int n_row,
int n_col,
RowInfo Row [],
ColInfo Col [],
int A []
)
{
/* === Local variables ================================================== */
int r ;
int c ;
int *rp ;
int *rp_end ;
int *cp ;
int *cp_end ;
/* === Dump the rows and columns of the matrix ========================== */
if (debug_colamd < 3)
{
return ;
}
DEBUG3 (("DUMP MATRIX:\n")) ;
for (r = 0 ; r < n_row ; r++)
{
DEBUG3 (("Row %d alive? %d\n", r, ROW_IS_ALIVE (r))) ;
if (ROW_IS_DEAD (r))
{
continue ;
}
DEBUG3 (("start %d length %d degree %d\n",
Row [r].start, Row [r].length, Row [r].shared1.degree)) ;
rp = &A [Row [r].start] ;
rp_end = rp + Row [r].length ;
while (rp < rp_end)
{
c = *rp++ ;
DEBUG3 ((" %d col %d\n", COL_IS_ALIVE (c), c)) ;
}
}
for (c = 0 ; c < n_col ; c++)
{
DEBUG3 (("Col %d alive? %d\n", c, COL_IS_ALIVE (c))) ;
if (COL_IS_DEAD (c))
{
continue ;
}
DEBUG3 (("start %d length %d shared1 %d shared2 %d\n",
Col [c].start, Col [c].length,
Col [c].shared1.thickness, Col [c].shared2.score)) ;
cp = &A [Col [c].start] ;
cp_end = cp + Col [c].length ;
while (cp < cp_end)
{
r = *cp++ ;
DEBUG3 ((" %d row %d\n", ROW_IS_ALIVE (r), r)) ;
}
}
}
#endif
|