File: sgssv.c

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (196 lines) | stat: -rw-r--r-- 7,021 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196


/*
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 *
 */
#include "ssp_defs.h"
#include "util.h"

void
sgssv(SuperMatrix *A, int *perm_c, int *perm_r, SuperMatrix *L,
      SuperMatrix *U, SuperMatrix *B, int *info )
{
/*
 * Purpose
 * =======
 *
 * SGSSV solves the system of linear equations A*X=B, using the
 * LU factorization from SGSTRF. It performs the following steps:
 *
 *   1. If A is stored column-wise (A->Stype = NC):
 *
 *      1.1. Permute the columns of A, forming A*Pc, where Pc
 *           is a permutation matrix. For more details of this step, 
 *           see sp_preorder.c.
 *
 *      1.2. Factor A as Pr*A*Pc=L*U with the permutation Pr determined
 *           by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      1.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   2. If A is stored row-wise (A->Stype = NR), apply the
 *      above algorithm to the transpose of A:
 *
 *      2.1. Permute columns of transpose(A) (rows of A),
 *           forming transpose(A)*Pc, where Pc is a permutation matrix. 
 *           For more details of this step, see sp_preorder.c.
 *
 *      2.2. Factor A as Pr*transpose(A)*Pc=L*U with the permutation Pr
 *           determined by Gaussian elimination with partial pivoting.
 *           L is unit lower triangular with offdiagonal entries
 *           bounded by 1 in magnitude, and U is upper triangular.
 *
 *      2.3. Solve the system of equations A*X=B using the factored
 *           form of A.
 *
 *   See supermatrix.h for the definition of 'SuperMatrix' structure.
 * 
 * Arguments
 * =========
 *
 * A       (input) SuperMatrix*
 *         Matrix A in A*X=B, of dimension (A->nrow, A->ncol). The number
 *         of linear equations is A->nrow. Currently, the type of A can be:
 *         Stype = NC or NR; Dtype = S_; Mtype = GE. In the future, more
 *         general A will be handled.
 *
 * perm_c  (input/output) int*
 *         If A->Stype = NC, column permutation vector of size A->ncol
 *         which defines the permutation matrix Pc; perm_c[i] = j means 
 *         column i of A is in position j in A*Pc.
 *         On exit, perm_c may be overwritten by the product of the input
 *         perm_c and a permutation that postorders the elimination tree
 *         of Pc'*A'*A*Pc; perm_c is not changed if the elimination tree
 *         is already in postorder.
 *
 *         If A->Stype = NR, column permutation vector of size A->nrow
 *         which describes permutation of columns of transpose(A) 
 *         (rows of A) as described above.
 * 
 * perm_r  (output) int*
 *         If A->Stype = NC, row permutation vector of size A->nrow, 
 *         which defines the permutation matrix Pr, and is determined 
 *         by partial pivoting.  perm_r[i] = j means row i of A is in 
 *         position j in Pr*A.
 *
 *         If A->Stype = NR, permutation vector of size A->ncol, which
 *         determines permutation of rows of transpose(A)
 *         (columns of A) as described above.
 *
 * L       (output) SuperMatrix*
 *         The factor L from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses compressed row subscripts storage for supernodes, i.e.,
 *         L has types: Stype = SC, Dtype = S_, Mtype = TRLU.
 *         
 * U       (output) SuperMatrix*
 *	   The factor U from the factorization 
 *             Pr*A*Pc=L*U              (if A->Stype = NC) or
 *             Pr*transpose(A)*Pc=L*U   (if A->Stype = NR).
 *         Uses column-wise storage scheme, i.e., U has types:
 *         Stype = NC, Dtype = S_, Mtype = TRU.
 *
 * B       (input/output) SuperMatrix*
 *         B has types: Stype = DN, Dtype = S_, Mtype = GE.
 *         On entry, the right hand side matrix.
 *         On exit, the solution matrix if info = 0;
 *
 * info    (output) int*
 *	   = 0: successful exit
 *         > 0: if info = i, and i is
 *             <= A->ncol: U(i,i) is exactly zero. The factorization has
 *                been completed, but the factor U is exactly singular,
 *                so the solution could not be computed.
 *             > A->ncol: number of bytes allocated when memory allocation
 *                failure occurred, plus A->ncol.
 *   
 */
    double   t1;	/* Temporary time */
    char     refact[1], trans[1];
    DNformat *Bstore;
    SuperMatrix *AA; /* A in NC format used by the factorization routine.*/
    SuperMatrix AC; /* Matrix postmultiplied by Pc */
    int      lwork = 0, *etree, i;
    
    /* Set default values for some parameters */
    float   diag_pivot_thresh = 1.0;
    float   drop_tol = 0;
    int      panel_size;     /* panel size */
    int      relax;          /* no of columns in a relaxed snodes */
    double   *utime;
    extern SuperLUStat_t SuperLUStat;

    /* Test the input parameters ... */
    *info = 0;
    Bstore = B->Store;
    if ( A->nrow != A->ncol || A->nrow < 0 ||
	 (A->Stype != NC && A->Stype != NR) ||
	 A->Dtype != S_ || A->Mtype != GE )
	*info = -1;
    else if ( B->ncol < 0 || Bstore->lda < SUPERLU_MAX(0, A->nrow) ||
	B->Stype != DN || B->Dtype != S_ || B->Mtype != GE )
	*info = -6;
    if ( *info != 0 ) {
	i = -(*info);
	xerbla_("sgssv", &i);
	return;
    }
    
    *refact = 'N';
    *trans = 'N';
    panel_size = sp_ienv(1);
    relax = sp_ienv(2);

    StatInit(panel_size, relax);
    utime = SuperLUStat.utime;
 
    /* Convert A to NC format when necessary. */
    if ( A->Stype == NR ) {
	NRformat *Astore = A->Store;
	AA = (SuperMatrix *) SUPERLU_MALLOC( sizeof(SuperMatrix) );
	sCreate_CompCol_Matrix(AA, A->ncol, A->nrow, Astore->nnz, 
			       Astore->nzval, Astore->colind, Astore->rowptr,
			       NC, A->Dtype, A->Mtype);
	*trans = 'T';
    } else if ( A->Stype == NC ) AA = A;

    etree = intMalloc(A->ncol);

    t1 = SuperLU_timer_();
    sp_preorder(refact, AA, perm_c, etree, &AC);
    utime[ETREE] = SuperLU_timer_() - t1;

    /*printf("Factor PA = LU ... relax %d\tw %d\tmaxsuper %d\trowblk %d\n", 
	  relax, panel_size, sp_ienv(3), sp_ienv(4));*/
    t1 = SuperLU_timer_(); 
    /* Compute the LU factorization of A. */
    sgstrf(refact, &AC, diag_pivot_thresh, drop_tol, relax, panel_size,
	   etree, NULL, lwork, perm_r, perm_c, L, U, info);
    utime[FACT] = SuperLU_timer_() - t1;

    t1 = SuperLU_timer_();
    if ( *info == 0 ) {
        /* Solve the system A*X=B, overwriting B with X. */
        sgstrs (trans, L, U, perm_r, perm_c, B, info);
    }
    utime[SOLVE] = SuperLU_timer_() - t1;

    SUPERLU_FREE (etree);
    Destroy_CompCol_Permuted(&AC);
    if ( A->Stype == NR ) {
	Destroy_SuperMatrix_Store(AA);
	SUPERLU_FREE(AA);
    }

    PrintStat( &SuperLUStat );
    StatFree();

}