File: sp_coletree.c

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (296 lines) | stat: -rw-r--r-- 6,183 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

/*  Elimination tree computation and layout routines */

#include <stdio.h>
#include <stdlib.h>
#include "util.h"

/* 
 *  Implementation of disjoint set union routines.
 *  Elements are integers in 0..n-1, and the 
 *  names of the sets themselves are of type int.
 *  
 *  Calls are:
 *  initialize_disjoint_sets (n) initial call.
 *  s = make_set (i)             returns a set containing only i.
 *  s = link (t, u)		 returns s = t union u, destroying t and u.
 *  s = find (i)		 return name of set containing i.
 *  finalize_disjoint_sets 	 final call.
 *
 *  This implementation uses path compression but not weighted union.
 *  See Tarjan's book for details.
 *  John Gilbert, CMI, 1987.
 *
 *  Implemented path-halving by XL 7/5/95.
 */

static int	*pp;		/* parent array for sets */

static 
int *mxCallocInt(int n)
{
    register int i;
    int *buf;

    buf = (int *) SUPERLU_MALLOC( n * sizeof(int) );
    if ( !buf ) {
         ABORT("SUPERLU_MALLOC fails for buf in mxCallocInt()");
       }
    for (i = 0; i < n; i++) buf[i] = 0;
    return (buf);
}
      
static
void initialize_disjoint_sets (
	int n
	)
{
	pp = mxCallocInt(n);
}


static
int make_set (
	int i
	)
{
	pp[i] = i;
	return i;
}


static
int link (
	int s,
	int t
	)
{
	pp[s] = t;
	return t;
}


/* PATH HALVING */
static
int find (int i)
{
    register int p, gp;
    
    p = pp[i];
    gp = pp[p];
    while (gp != p) {
	pp[i] = gp;
	i = gp;
	p = pp[i];
	gp = pp[p];
    }
    return (p);
}

#if 0
/* PATH COMPRESSION */
static
int find (
	int i
	)
{
	if (pp[i] != i) 
		pp[i] = find (pp[i]);
	return pp[i];
}
#endif

static
void finalize_disjoint_sets (
	void
	)
{
	SUPERLU_FREE(pp);
}


/*
 *      Find the elimination tree for A'*A.
 *      This uses something similar to Liu's algorithm. 
 *      It runs in time O(nz(A)*log n) and does not form A'*A.
 *
 *      Input:
 *        Sparse matrix A.  Numeric values are ignored, so any
 *        explicit zeros are treated as nonzero.
 *      Output:
 *        Integer array of parents representing the elimination
 *        tree of the symbolic product A'*A.  Each vertex is a
 *        column of A, and nc means a root of the elimination forest.
 *
 *      John R. Gilbert, Xerox, 10 Dec 1990
 *      Based on code by JRG dated 1987, 1988, and 1990.
 */

/*
 * Nonsymmetric elimination tree
 */
int
sp_coletree(
	    int *acolst, int *acolend, /* column start and end past 1 */
	    int *arow,                 /* row indices of A */
	    int nr, int nc,            /* dimension of A */
	    int *parent	               /* parent in elim tree */
	    )
{
	int	*root;			/* root of subtee of etree 	*/
	int     *firstcol;		/* first nonzero col in each row*/
	int	rset, cset;             
	int	row, col;
	int	rroot;
	int	p;

	root = mxCallocInt (nc);
	initialize_disjoint_sets (nc);

	/* Compute firstcol[row] = first nonzero column in row */

	firstcol = mxCallocInt (nr);
	for (row = 0; row < nr; firstcol[row++] = nc);
	for (col = 0; col < nc; col++) 
		for (p = acolst[col]; p < acolend[col]; p++) {
			row = arow[p];
			firstcol[row] = SUPERLU_MIN(firstcol[row], col);
		}

	/* Compute etree by Liu's algorithm for symmetric matrices,
           except use (firstcol[r],c) in place of an edge (r,c) of A.
	   Thus each row clique in A'*A is replaced by a star
	   centered at its first vertex, which has the same fill. */

	for (col = 0; col < nc; col++) {
		cset = make_set (col);
		root[cset] = col;
		parent[col] = nc; /* Matlab */
		for (p = acolst[col]; p < acolend[col]; p++) {
			row = firstcol[arow[p]];
			if (row >= col) continue;
			rset = find (row);
			rroot = root[rset];
			if (rroot != col) {
				parent[rroot] = col;
				cset = link (cset, rset);
				root[cset] = col;
			}
		}
	}

	SUPERLU_FREE (root);
	SUPERLU_FREE (firstcol);
	finalize_disjoint_sets ();
	return 0;
}

/*
 *  q = TreePostorder (n, p);
 *
 *	Postorder a tree.
 *	Input:
 *	  p is a vector of parent pointers for a forest whose
 *        vertices are the integers 0 to n-1; p[root]==n.
 *	Output:
 *	  q is a vector indexed by 0..n-1 such that q[i] is the
 *	  i-th vertex in a postorder numbering of the tree.
 *
 *        ( 2/7/95 modified by X.Li:
 *          q is a vector indexed by 0:n-1 such that vertex i is the
 *          q[i]-th vertex in a postorder numbering of the tree.
 *          That is, this is the inverse of the previous q. )
 *
 *	In the child structure, lower-numbered children are represented
 *	first, so that a tree which is already numbered in postorder
 *	will not have its order changed.
 *    
 *  Written by John Gilbert, Xerox, 10 Dec 1990.
 *  Based on code written by John Gilbert at CMI in 1987.
 */

static int	*first_kid, *next_kid;	/* Linked list of children.	*/
static int	*post, postnum;
#define ETDFS_GEUS

#ifdef ETDFS_GEUS
static int 	*parent_s;

static
/*
 * Depth-first search from vertex v.
 */
void etdfs_geus (
		 int	v
		 )
{
	int	w, c;

	w = v;
	/* traverse non-branching portion of the tree */
	while (c = first_kid[w], c != -1 && next_kid[c] == -1) {
	  w = c;
	}
	/* call all branches */
	for (; c != -1; c = next_kid[c]) {
		etdfs_geus(c);
	}
	/* output non-branching portion in reverse order */
	while (w != v) {
	  post[w] = postnum++;
	  w = parent_s[w];
	}
	post[w] = postnum++;
}
#else
void etdfs (
	    int     v
	    )
{
        int     w;

	for (w = first_kid[v]; w != -1; w = next_kid[w]) {
                etdfs (w);
        }
        /* post[postnum++] = v; in Matlab */
        post[v] = postnum++;    /* Modified by X.Li on 2/14/95 */
}
#endif

/*
 * Post order a tree
 */
int *TreePostorder(
	int n,
	int *parent
)
{
	int	v, dad;

	/* Allocate storage for working arrays and results	*/
	first_kid = 	mxCallocInt (n+1);
	next_kid  = 	mxCallocInt (n+1);
	post	  = 	mxCallocInt (n+1);

	/* Set up structure describing children */
	for (v = 0; v <= n; first_kid[v++] = -1);
	for (v = n-1; v >= 0; v--) {
		dad = parent[v];
		next_kid[v] = first_kid[dad];
		first_kid[dad] = v;
	}

	/* Depth-first search from dummy root vertex #n */
	postnum = 0;
#ifdef ETDFS_GEUS
	parent_s = parent;
	etdfs_geus (n);
#else
	etdfs (n);
#endif

	SUPERLU_FREE (first_kid);
	SUPERLU_FREE (next_kid);
	return post;
}