1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
import unittest
import math, random
import spmatrix
import spmatrix_util
import poisson
import scipy
#from Numeric import RandomArray
def llmat_isEqual(aMat, bMat):
if aMat.issym and not bMat.issym:
temp = aMat; aMat = bMat; bMat = temp
zMat = aMat.copy()
zMat.shift(-1.0, bMat)
return zMat.nnz == 0
class LLMatSimpleTestCase(unittest.TestCase):
def setUp(self):
self.n = 10
self.A = spmatrix.ll_mat(self.n, self.n)
self.S = spmatrix.ll_mat_sym(self.n)
def testCreate(self):
self.failUnless(self.A.shape == (self.n, self.n))
self.failUnless(self.A.nnz == 0)
self.failUnless(not self.A.issym)
self.failUnless(self.S.shape == (self.n, self.n))
self.failUnless(self.S.nnz == 0)
self.failUnless(self.S.issym)
def testEntry(self):
def assignUP(): self.S[0,1] = 1.0
def assignLeft(): self.S[-11,0] = 1.0
def assignRight(): self.S[10,0] = 1.0
def assignTop(): self.S[0,-11] = 1.0
def assignBottom(): self.S[0,10] = 1.0
self.A[0,0] = 1.0
self.S[0,0] = 1.0
self.failUnless(self.A[0,0] == 1.0)
self.failUnless(self.A.nnz == 1)
self.failUnless(self.S[0,0] == 1.0)
self.failUnless(self.S.nnz == 1)
self.failUnlessRaises(spmatrix.error, assignUP)
self.A[0,0] += 1.0
self.failUnless(self.A[0,0] == 2.0)
self.failUnless(self.A.nnz == 1)
self.A[0,0] -= 2.0
self.failUnless(self.A[0,0] == 0.0)
self.failUnless(self.A.nnz == 0)
# indices out of bounds
for f in [assignLeft, assignRight, assignTop, assignBottom]:
self.failUnlessRaises(IndexError, f)
# negative indices
I = spmatrix.ll_mat(10, 10, 100)
for i in range(10):
for j in range(10):
I[i,j] = 10*i + j
for i in range(-10, 0):
for j in range(-10, 0):
self.failUnless(I[i,j] == I[10+i,10+j])
class LLMatPoissonTestCase(unittest.TestCase):
def setUp(self):
self.n = 20
self.A = poisson.poisson2d(self.n)
self.S = poisson.poisson2d_sym(self.n)
self.B = poisson.poisson2d_sym_blk(self.n)
def testBasic(self):
self.failUnless(self.S.nnz == self.n*(3*self.n - 2))
self.failUnless(self.A.nnz == self.n*(5*self.n - 4))
self.failUnless(llmat_isEqual(self.A, self.A))
self.failUnless(llmat_isEqual(self.S, self.S))
self.failUnless(llmat_isEqual(self.A, self.S))
self.failUnless(llmat_isEqual(self.A, self.B))
def testSubmatrix(self):
n = self.n
Psym = poisson.poisson1d_sym(n)
P = poisson.poisson1d(n)
for i in range(n):
P[i,i] = 4.0
Psym[i,i] = 4.0
# read and test diagonal blocks
for i in range(n):
self.failUnless(llmat_isEqual(self.A[n*i:n*(i+1),n*i:n*(i+1)], P))
self.failUnless(llmat_isEqual(self.S[n*i:n*(i+1),n*i:n*(i+1)], P))
self.failUnless(llmat_isEqual(self.A[n*i:n*(i+1),n*i:n*(i+1)], Psym))
self.failUnless(llmat_isEqual(self.S[n*i:n*(i+1),n*i:n*(i+1)], Psym))
# store and get diagonal blocks
R = spmatrix_util.ll_mat_rand(n*n, n*n, 0.01) # random matrix
for i in range(n):
R[n*i:n*(i+1),n*i:n*(i+1)] = P
self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], P))
R[n*i:n*(i+1),n*i:n*(i+1)] = Psym
self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], Psym))
# store and get off-diagonal blocks
for i in range(n-1):
R[n*i:n*(i+1),n*(i+1):n*(i+2)] = P
self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*(i+1):n*(i+2)], P))
R[n*i:n*(i+1),n*(i+1):n*(i+2)] = Psym
self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*(i+1):n*(i+2)], Psym))
# store and get diagonal blocks in symmetric matrix
R = spmatrix.ll_mat_sym(n*n)
for i in range(n):
R[n*i:n*(i+1),n*i:n*(i+1)] = Psym
self.failUnless(llmat_isEqual(R[n*i:n*(i+1),n*i:n*(i+1)], Psym))
# store and get off-diagonal blocks in symmetric matrix
for i in range(n-1):
R[n*(i+1):n*(i+2),n*i:n*(i+1)] = P
self.failUnless(llmat_isEqual(R[n*(i+1):n*(i+2),n*i:n*(i+1)], P))
R[n*(i+1):n*(i+2),n*i:n*(i+1)] = Psym
self.failUnless(llmat_isEqual(R[n*(i+1):n*(i+2),n*i:n*(i+1)], Psym))
class LLMatDeleteRowColsTestCase(unittest.TestCase):
def setUp(self):
import Numeric
self.n = 30
self.P = poisson.poisson1d(self.n)
for i in range(self.n):
self.P[i,i] = 4.0
self.A = poisson.poisson2d(self.n)
self.S = poisson.poisson2d_sym(self.n)
self.I = spmatrix.ll_mat_sym(self.n)
for i in range(self.n):
self.I[i,i] = -1.0
self.mask = Numeric.zeros(self.n**2, 'l')
self.mask[self.n/2*self.n:(self.n/2 + 1)*self.n] = 1
self.mask1 = Numeric.zeros(self.n**2, 'l')
self.mask1[(self.n/2 + 1)*self.n:(self.n/2 + 2)*self.n] = 1
def testDeleteRowColsSym(self):
self.S.delete_rowcols(self.mask)
self.failUnless(llmat_isEqual(self.S, self.P))
def testDeleteRowColsGen(self):
self.A.delete_rowcols(self.mask)
self.failUnless(llmat_isEqual(self.A, self.P))
def testDeleteRowColsGen2Step(self):
self.A.delete_rows(self.mask)
self.A.delete_cols(self.mask)
self.failUnless(llmat_isEqual(self.A, self.P))
def testDeleteRowColsGen2StepOff(self):
self.A.delete_rows(self.mask)
self.A.delete_cols(self.mask1)
self.failUnless(llmat_isEqual(self.A, self.I))
def testCompress(self):
self.A.delete_rows(self.mask)
self.A.delete_cols(self.mask1)
norm1 = self.A.norm('fro')
self.A.compress()
norm2 = self.A.norm('fro')
self.failUnless(norm1 == norm2)
def testCompressStress(self):
n = 20
A = spmatrix.ll_mat(n, n)
for k in range(20):
for i in range(n*n/2):
i = random.randrange(n)
j = random.randrange(n)
A[i, j] = 1.0
for i in range(n*n/2):
i = random.randrange(n)
j = random.randrange(n)
A[i, j] = 0.0
class LLMatNorm(unittest.TestCase):
def setUp(self):
self.n = 30
def testNormGeneral(self):
A = poisson.poisson2d(self.n)
self.failUnless(A.norm('1') == 8)
self.failUnless(A.norm('inf') == 8)
self.failUnless(poisson.poisson1d(3).norm('fro') == 4)
def testNormSymmetric(self):
A = spmatrix.ll_mat_sym(4)
A[0,0] = 1; A[1,1] = 2; A[2,2] = 3; A[3,3] = 4;
A[1,0] = 3; A[2,0] = 2; A[3,0] = 2;
self.failUnless(A.norm('fro') == 8)
def testNormSymmetricNotImplemented(self):
def f(): return A.norm('1')
def g(): return A.norm('inf')
A = poisson.poisson2d_sym(self.n)
self.failUnlessRaises(NotImplementedError, f)
self.failUnlessRaises(NotImplementedError, g)
class LLMatMatMul(unittest.TestCase):
def testRandomMat(self):
eps = 2.2204460492503131E-16
n = 30; m = 60; k = 30
for i in range(100):
A = spmatrix_util.ll_mat_rand(n, k, 0.9)
B = spmatrix_util.ll_mat_rand(k, m, 0.4)
C = spmatrix.matrixmultiply(A, B)
t = Numeric.zeros(k, 'd')
y1 = Numeric.zeros(n, 'd')
y2 = Numeric.zeros(n, 'd')
for s in range(10):
#x = RandomArray.random((m, ))
x = numpy.random.rand((m, ))
C.matvec(x, y1)
B.matvec(x, t)
A.matvec(t, y2)
self.failUnless(math.sqrt(Numeric.dot(y1 - y2, y1 - y2)) < eps * n*m*k)
if __name__ == '__main__':
unittest.main()
|