1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
from itertools import izip
from numpy.testing import *
import numpy as N
set_local_path('../..')
from svm.classification import *
from svm.dataset import LibSvmClassificationDataSet, LibSvmTestDataSet
from svm.kernel import *
from svm.predict import *
restore_path()
class test_classification(NumpyTestCase):
def check_basics(self):
kernel = LinearKernel()
# C-SVC
ModelType = LibSvmCClassificationModel
ModelType(kernel)
ModelType(kernel, cost=1.0)
weights = [(2, 10.0), (1, 20.0), (0, 30.0)]
ModelType(kernel, weights=weights)
ModelType(kernel, 1.0, weights)
ModelType(kernel, cost=1.0, weights=weights)
# nu-SVC
ModelType = LibSvmNuClassificationModel
ModelType(kernel)
ModelType(kernel, nu=0.5)
ModelType(kernel, weights=weights)
ModelType(kernel, 0.5, weights)
def _make_basic_datasets(self):
labels = [0, 1, 1, 2]
x = [N.array([0, 0]),
N.array([0, 1]),
N.array([1, 0]),
N.array([1, 1])]
traindata = LibSvmClassificationDataSet(labels, x)
testdata = LibSvmTestDataSet(x)
return traindata, testdata
def check_c_basics(self):
traindata, testdata = self._make_basic_datasets()
kernel = RBFKernel(traindata.gamma)
model = LibSvmCClassificationModel(kernel)
results = model.fit(traindata)
p = results.predict(testdata)
assert_array_equal(p, [1, 1, 1, 1])
results.predict_values(testdata)
def _make_basic_kernels(self, gamma):
kernels = [
LinearKernel(),
PolynomialKernel(3, gamma, 0.0),
RBFKernel(gamma)
]
return kernels
def _classify_basic(self, ModelType,
modelargs, expected_rhos, expected_ps):
traindata, testdata = self._make_basic_datasets()
kernels = self._make_basic_kernels(traindata.gamma)
for kernel, expected_rho, expected_p in \
zip(kernels, expected_rhos, expected_ps):
args = (kernel,) + modelargs
model = ModelType(*args)
results = model.fit(traindata)
self.assertEqual(results.labels, [0, 1, 2])
# decimal=4 due to compiler-dependent variations in rho
assert_array_almost_equal(results.rho, expected_rho, decimal=4)
p = N.array(results.predict(testdata))
assert_array_equal(p, expected_p)
def check_c_more(self):
cost = 10.0
weights = [(1, 10.0)]
modelargs = cost, weights
expected_rhos = [[-0.999349, -1.0, -3.0],
[0.375, -1.0, -1.153547],
[0.671181, 0.0, -0.671133]]
expected_ps = [[0, 1, 1, 2], [1, 1, 1, 2], [0, 1, 1, 2]]
self._classify_basic(LibSvmCClassificationModel,
modelargs, expected_rhos, expected_ps)
def check_c_probability(self):
traindata, testdata = self._make_basic_datasets()
nu = 0.5
cost = 10.0
weights = [(1, 10.0)]
kernels = self._make_basic_kernels(traindata.gamma)
models = [
(LibSvmCClassificationModel, (cost, weights)),
(LibSvmNuClassificationModel, (nu, weights))
]
for ModelType, modelargs in models:
for kernel in kernels:
args = (kernel,) + modelargs
kwargs = {'probability' : True}
model = ModelType(*args, **kwargs)
results = model.fit(traindata)
results.predict_probability(testdata)
def check_cross_validate(self):
labels = ([-1] * 50) + ([1] * 50)
x = N.random.randn(len(labels), 10)
traindata = LibSvmClassificationDataSet(labels, x)
kernel = LinearKernel()
model = LibSvmCClassificationModel(kernel)
nr_fold = 10
pcorr = model.cross_validate(traindata, nr_fold)
# XXX check cross-validation with and without probability
# output enabled
def check_nu_basics(self):
traindata, testdata = self._make_basic_datasets()
kernel = RBFKernel(traindata.gamma)
model = LibSvmNuClassificationModel(kernel)
results = model.fit(traindata)
p = results.predict(testdata)
assert_array_equal(p, [0, 1, 1, 2])
v = results.predict_values(testdata)
def check_nu_more(self):
nu = 0.5
weights = [(1, 10.0)]
modelargs = nu, weights
expected_rhos = [[-1.0, -1.0, -3.0],
[-1.0, -1.0, -1.15384846],
[0.6712142, 0.0, -0.6712142]]
expected_ps = [[0, 1, 1, 2]] * 3
self._classify_basic(LibSvmNuClassificationModel,
modelargs, expected_rhos, expected_ps)
def _make_datasets(self):
labels1 = N.random.random_integers(0, 2, 100)
x1 = N.random.randn(len(labels1), 10)
labels2 = N.random.random_integers(0, 2, 10)
x2 = N.random.randn(len(labels2), x1.shape[1])
trndata1 = LibSvmClassificationDataSet(labels1, x1)
trndata2 = LibSvmClassificationDataSet(labels2, x2)
reflabels = N.concatenate([labels1, labels2])
refx = N.vstack([x1, x2])
trndata = LibSvmClassificationDataSet(reflabels, refx)
testdata = LibSvmTestDataSet(refx)
return trndata, testdata, trndata1, trndata2
def _make_kernels(self):
def kernelf(x, y, dot):
return dot(x, y)
def kernelg(x, y, dot):
return -dot(x, y)
kernels = [LinearKernel()]
#kernels += [RBFKernel(gamma)
# for gamma in [-0.1, 0.2, 0.3]]
#kernels += [PolynomialKernel(degree, gamma, coef0)
# for degree, gamma, coef0 in
# [(1, 0.1, 0.0), (2, -0.2, 1.3), (3, 0.3, -0.3)]]
#kernels += [SigmoidKernel(gamma, coef0)
# for gamma, coef0 in [(0.2, -0.5), (-0.5, 1.5)]]
#kernels += [CustomKernel(f) for f in [kernelf, kernelg]]
return kernels
def check_all(self):
trndata, testdata, trndata1, trndata2 = self._make_datasets()
kernels = self._make_kernels()
weights = [(0, 2.0), (1, 5.0), (2, 3.0)]
for kernel in kernels:
pctrndata1 = trndata1.precompute(kernel)
pctrndata = pctrndata1.combine(trndata2)
models = [
LibSvmCClassificationModel(kernel, 2.0, weights, True),
LibSvmNuClassificationModel(kernel, 0.3, weights, True)
]
fitargs = []
# CustomKernel needs a precomputed dataset
if not isinstance(kernel, CustomKernel):
fitargs += [
(trndata, LibSvmPredictor),
#(trndata, LibSvmPythonPredictor),
]
fitargs += [
(pctrndata, LibSvmPredictor),
#(pctrndata, LibSvmPythonPredictor)
]
for model in models:
refresults = model.fit(*fitargs[0])
refrho = refresults.rho
refp = refresults.predict(testdata)
refv = refresults.predict_values(testdata)
refpp = refresults.predict_probability(testdata)
for args in fitargs[1:]:
results = model.fit(*args)
assert_array_almost_equal(results.rho, refrho)
p = results.predict(testdata)
assert_array_almost_equal(refp, p)
v = results.predict_values(testdata)
for v, refv in zip(v, refv):
for key, value in refv.iteritems():
self.assertAlmostEqual(v[key], value)
try:
pp = results.predict_probability(testdata)
# XXX there are slight differences between
# precomputed and normal kernels here
#for (lbl, p), (reflbl, refp) in zip(pp, refpp):
# self.assertEqual(lbl, reflbl)
# assert_array_almost_equal(p, refp)
except NotImplementedError:
self.assert_(fitargs[-1] is LibSvmPythonPredictor)
def check_python_predict(self):
traindata, testdata = self._make_basic_datasets()
kernel = LinearKernel()
cost = 10.0
weights = [(1, 10.0)]
model = LibSvmCClassificationModel(kernel, cost, weights)
refresults = model.fit(traindata)
results = model.fit(traindata, LibSvmPythonPredictor)
refv = refresults.predict_values(testdata)
v = results.predict_values(testdata)
self.assertEqual(len(refv), len(v))
for pred, refpred in zip(v, refv):
for key, value in refpred.iteritems():
assert_array_almost_equal(value, pred[key])
refp = refresults.predict(testdata)
p = results.predict(testdata)
assert_array_equal(p, refp)
def xcheck_compact(self):
traindata, testdata = self._make_basic_datasets()
kernel = LinearKernel()
cost = 10.0
weights = [(1, 10.0)]
model = LibSvmCClassificationModel(kernel, cost, weights)
results = model.fit(traindata, LibSvmPythonPredictor)
refvs = results.predict_values(testdata)
results.compact()
vs = results.predict_values(testdata)
for refv, v in zip(refvs, vs):
for key, value in refv.iteritems():
self.assertEqual(value, v[key])
def _make_compact_check_datasets(self):
x = N.random.randn(150, 3)
labels = N.random.random_integers(1, 5, x.shape[0])
traindata = LibSvmClassificationDataSet(labels, x)
xdim, ydim, zdim = 4, 4, x.shape[1]
img = N.random.randn(xdim, ydim, zdim)
testdata1 = LibSvmTestDataSet(img.reshape(xdim*ydim, zdim))
testdata2 = LibSvmTestDataSet(list(img.reshape(xdim*ydim, zdim)))
return traindata, testdata1, testdata2
def check_compact_predict_values(self):
def compare_predict_values(vx, vy):
for pred1, pred2 in izip(vx, vy):
for labels, x in pred1.iteritems():
self.assert_(labels in pred2)
self.assertAlmostEqual(x, pred2[labels])
traindata, testdata1, testdata2 = \
self._make_compact_check_datasets()
kernel = LinearKernel()
model = LibSvmCClassificationModel(kernel)
refresults = model.fit(traindata)
refv1 = refresults.predict_values(testdata1)
refv2 = refresults.predict_values(testdata2)
results = model.fit(traindata, LibSvmPythonPredictor)
v11 = results.predict_values(testdata1)
v12 = results.predict_values(testdata2)
results.compact()
v21 = results.predict_values(testdata1)
v22 = results.predict_values(testdata2)
compare_predict_values(refv1, refv2)
compare_predict_values(refv1, v11)
compare_predict_values(refv1, v12)
compare_predict_values(refv1, v21)
# XXX this test fails
#compare_predict_values(refv1, v22)
def check_compact_predict(self):
traindata, testdata1, testdata2 = \
self._make_compact_check_datasets()
kernel = LinearKernel()
model = LibSvmCClassificationModel(kernel)
refresults = model.fit(traindata)
refp1 = refresults.predict(testdata1)
refp2 = refresults.predict(testdata2)
results = model.fit(traindata, LibSvmPythonPredictor)
p11 = results.predict(testdata1)
p12 = results.predict(testdata2)
results.compact()
p21 = results.predict(testdata1)
p22 = results.predict(testdata2)
self.assertEqual(refp1, refp2)
self.assertEqual(refp1, p11)
self.assertEqual(refp1, p12)
# XXX these tests fail
#self.assertEqual(refp1, p21)
#self.assertEqual(refp1, p22)
def check_no_support_vectors(self):
x = N.array([[10.0, 20.0]])
labels = [1]
traindata = LibSvmClassificationDataSet(labels, x)
kernel = LinearKernel()
model = LibSvmCClassificationModel(kernel)
testdata = LibSvmTestDataSet(x)
self.assertRaises(ValueError, model.fit, traindata)
if __name__ == '__main__':
NumpyTest().run()
|