File: test_classification.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (311 lines) | stat: -rw-r--r-- 12,568 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from itertools import izip
from numpy.testing import *
import numpy as N

set_local_path('../..')
from svm.classification import *
from svm.dataset import LibSvmClassificationDataSet, LibSvmTestDataSet
from svm.kernel import *
from svm.predict import *
restore_path()

class test_classification(NumpyTestCase):
    def check_basics(self):
        kernel = LinearKernel()
        # C-SVC
        ModelType = LibSvmCClassificationModel
        ModelType(kernel)
        ModelType(kernel, cost=1.0)
        weights = [(2, 10.0), (1, 20.0), (0, 30.0)]
        ModelType(kernel, weights=weights)
        ModelType(kernel, 1.0, weights)
        ModelType(kernel, cost=1.0, weights=weights)
        # nu-SVC
        ModelType = LibSvmNuClassificationModel
        ModelType(kernel)
        ModelType(kernel, nu=0.5)
        ModelType(kernel, weights=weights)
        ModelType(kernel, 0.5, weights)

    def _make_basic_datasets(self):
        labels = [0, 1, 1, 2]
        x = [N.array([0, 0]),
             N.array([0, 1]),
             N.array([1, 0]),
             N.array([1, 1])]
        traindata = LibSvmClassificationDataSet(labels, x)
        testdata = LibSvmTestDataSet(x)
        return traindata, testdata

    def check_c_basics(self):
        traindata, testdata = self._make_basic_datasets()
        kernel = RBFKernel(traindata.gamma)
        model = LibSvmCClassificationModel(kernel)
        results = model.fit(traindata)
        p = results.predict(testdata)
        assert_array_equal(p, [1, 1, 1, 1])
        results.predict_values(testdata)

    def _make_basic_kernels(self, gamma):
        kernels = [
            LinearKernel(),
            PolynomialKernel(3, gamma, 0.0),
            RBFKernel(gamma)
            ]
        return kernels

    def _classify_basic(self, ModelType,
                        modelargs, expected_rhos, expected_ps):
        traindata, testdata = self._make_basic_datasets()
        kernels = self._make_basic_kernels(traindata.gamma)
        for kernel, expected_rho, expected_p in \
                zip(kernels, expected_rhos, expected_ps):
            args = (kernel,) + modelargs
            model = ModelType(*args)
            results = model.fit(traindata)
            self.assertEqual(results.labels, [0, 1, 2])
            # decimal=4 due to compiler-dependent variations in rho
            assert_array_almost_equal(results.rho, expected_rho, decimal=4)
            p = N.array(results.predict(testdata))
            assert_array_equal(p, expected_p)

    def check_c_more(self):
        cost = 10.0
        weights = [(1, 10.0)]
        modelargs = cost, weights
        expected_rhos = [[-0.999349, -1.0, -3.0],
                         [0.375, -1.0, -1.153547],
                         [0.671181, 0.0, -0.671133]]
        expected_ps = [[0, 1, 1, 2], [1, 1, 1, 2], [0, 1, 1, 2]]
        self._classify_basic(LibSvmCClassificationModel,
                             modelargs, expected_rhos, expected_ps)

    def check_c_probability(self):
        traindata, testdata = self._make_basic_datasets()
        nu = 0.5
        cost = 10.0
        weights = [(1, 10.0)]
        kernels = self._make_basic_kernels(traindata.gamma)
        models = [
            (LibSvmCClassificationModel, (cost, weights)),
            (LibSvmNuClassificationModel, (nu, weights))
            ]
        for ModelType, modelargs in models:
            for kernel in kernels:
                args = (kernel,) + modelargs
                kwargs = {'probability' : True}
                model = ModelType(*args, **kwargs)
                results = model.fit(traindata)
                results.predict_probability(testdata)

    def check_cross_validate(self):
        labels = ([-1] * 50) + ([1] * 50)
        x = N.random.randn(len(labels), 10)
        traindata = LibSvmClassificationDataSet(labels, x)
        kernel = LinearKernel()
        model = LibSvmCClassificationModel(kernel)
        nr_fold = 10
        pcorr = model.cross_validate(traindata, nr_fold)
        # XXX check cross-validation with and without probability
        # output enabled

    def check_nu_basics(self):
        traindata, testdata = self._make_basic_datasets()
        kernel = RBFKernel(traindata.gamma)
        model = LibSvmNuClassificationModel(kernel)
        results = model.fit(traindata)
        p = results.predict(testdata)
        assert_array_equal(p, [0, 1, 1, 2])
        v = results.predict_values(testdata)

    def check_nu_more(self):
        nu = 0.5
        weights = [(1, 10.0)]
        modelargs = nu, weights
        expected_rhos = [[-1.0, -1.0, -3.0],
                         [-1.0, -1.0, -1.15384846],
                         [0.6712142, 0.0, -0.6712142]]
        expected_ps = [[0, 1, 1, 2]] * 3
        self._classify_basic(LibSvmNuClassificationModel,
                             modelargs, expected_rhos, expected_ps)

    def _make_datasets(self):
        labels1 = N.random.random_integers(0, 2, 100)
        x1 = N.random.randn(len(labels1), 10)
        labels2 = N.random.random_integers(0, 2, 10)
        x2 = N.random.randn(len(labels2), x1.shape[1])
        trndata1 = LibSvmClassificationDataSet(labels1, x1)
        trndata2 = LibSvmClassificationDataSet(labels2, x2)
        reflabels = N.concatenate([labels1, labels2])
        refx = N.vstack([x1, x2])
        trndata = LibSvmClassificationDataSet(reflabels, refx)
        testdata = LibSvmTestDataSet(refx)
        return trndata, testdata, trndata1, trndata2

    def _make_kernels(self):
        def kernelf(x, y, dot):
            return dot(x, y)
        def kernelg(x, y, dot):
            return -dot(x, y)
        kernels = [LinearKernel()]
        #kernels += [RBFKernel(gamma)
        #            for gamma in [-0.1, 0.2, 0.3]]
        #kernels += [PolynomialKernel(degree, gamma, coef0)
        #            for degree, gamma, coef0 in
        #            [(1, 0.1, 0.0), (2, -0.2, 1.3), (3, 0.3, -0.3)]]
        #kernels += [SigmoidKernel(gamma, coef0)
        #            for gamma, coef0 in [(0.2, -0.5), (-0.5, 1.5)]]
        #kernels += [CustomKernel(f) for f in [kernelf, kernelg]]
        return kernels

    def check_all(self):
        trndata, testdata, trndata1, trndata2 = self._make_datasets()
        kernels = self._make_kernels()
        weights = [(0, 2.0), (1, 5.0), (2, 3.0)]
        for kernel in kernels:
            pctrndata1 = trndata1.precompute(kernel)
            pctrndata = pctrndata1.combine(trndata2)
            models = [
                LibSvmCClassificationModel(kernel, 2.0, weights, True),
                LibSvmNuClassificationModel(kernel, 0.3, weights, True)
                ]
            fitargs = []
            # CustomKernel needs a precomputed dataset
            if not isinstance(kernel, CustomKernel):
                fitargs += [
                    (trndata, LibSvmPredictor),
                    #(trndata, LibSvmPythonPredictor),
                    ]
            fitargs += [
                (pctrndata, LibSvmPredictor),
                #(pctrndata, LibSvmPythonPredictor)
                ]

            for model in models:
                refresults = model.fit(*fitargs[0])
                refrho = refresults.rho
                refp = refresults.predict(testdata)
                refv = refresults.predict_values(testdata)
                refpp = refresults.predict_probability(testdata)
                for args in fitargs[1:]:
                    results = model.fit(*args)
                    assert_array_almost_equal(results.rho, refrho)
                    p = results.predict(testdata)
                    assert_array_almost_equal(refp, p)
                    v = results.predict_values(testdata)
                    for v, refv in zip(v, refv):
                        for key, value in refv.iteritems():
                            self.assertAlmostEqual(v[key], value)
                    try:
                        pp = results.predict_probability(testdata)
                        # XXX there are slight differences between
                        # precomputed and normal kernels here
                        #for (lbl, p), (reflbl, refp) in zip(pp, refpp):
                        #    self.assertEqual(lbl, reflbl)
                        #    assert_array_almost_equal(p, refp)
                    except NotImplementedError:
                        self.assert_(fitargs[-1] is LibSvmPythonPredictor)

    def check_python_predict(self):
        traindata, testdata = self._make_basic_datasets()
        kernel = LinearKernel()
        cost = 10.0
        weights = [(1, 10.0)]
        model = LibSvmCClassificationModel(kernel, cost, weights)

        refresults = model.fit(traindata)
        results = model.fit(traindata, LibSvmPythonPredictor)

        refv = refresults.predict_values(testdata)
        v = results.predict_values(testdata)
        self.assertEqual(len(refv), len(v))
        for pred, refpred in zip(v, refv):
            for key, value in refpred.iteritems():
                assert_array_almost_equal(value, pred[key])

        refp = refresults.predict(testdata)
        p = results.predict(testdata)
        assert_array_equal(p, refp)

    def xcheck_compact(self):
        traindata, testdata = self._make_basic_datasets()
        kernel = LinearKernel()
        cost = 10.0
        weights = [(1, 10.0)]
        model = LibSvmCClassificationModel(kernel, cost, weights)
        results = model.fit(traindata, LibSvmPythonPredictor)
        refvs = results.predict_values(testdata)
        results.compact()
        vs = results.predict_values(testdata)
        for refv, v in zip(refvs, vs):
            for key, value in refv.iteritems():
                self.assertEqual(value, v[key])

    def _make_compact_check_datasets(self):
        x = N.random.randn(150, 3)
        labels = N.random.random_integers(1, 5, x.shape[0])
        traindata = LibSvmClassificationDataSet(labels, x)
        xdim, ydim, zdim = 4, 4, x.shape[1]
        img = N.random.randn(xdim, ydim, zdim)
        testdata1 = LibSvmTestDataSet(img.reshape(xdim*ydim, zdim))
        testdata2 = LibSvmTestDataSet(list(img.reshape(xdim*ydim, zdim)))
        return traindata, testdata1, testdata2

    def check_compact_predict_values(self):
        def compare_predict_values(vx, vy):
            for pred1, pred2 in izip(vx, vy):
                for labels, x in pred1.iteritems():
                    self.assert_(labels in pred2)
                    self.assertAlmostEqual(x, pred2[labels])
        traindata, testdata1, testdata2 = \
            self._make_compact_check_datasets()
        kernel = LinearKernel()
        model = LibSvmCClassificationModel(kernel)
        refresults = model.fit(traindata)
        refv1 = refresults.predict_values(testdata1)
        refv2 = refresults.predict_values(testdata2)
        results = model.fit(traindata, LibSvmPythonPredictor)
        v11 = results.predict_values(testdata1)
        v12 = results.predict_values(testdata2)
        results.compact()
        v21 = results.predict_values(testdata1)
        v22 = results.predict_values(testdata2)
        compare_predict_values(refv1, refv2)
        compare_predict_values(refv1, v11)
        compare_predict_values(refv1, v12)
        compare_predict_values(refv1, v21)
        # XXX this test fails
        #compare_predict_values(refv1, v22)

    def check_compact_predict(self):
        traindata, testdata1, testdata2 = \
            self._make_compact_check_datasets()
        kernel = LinearKernel()
        model = LibSvmCClassificationModel(kernel)
        refresults = model.fit(traindata)
        refp1 = refresults.predict(testdata1)
        refp2 = refresults.predict(testdata2)
        results = model.fit(traindata, LibSvmPythonPredictor)
        p11 = results.predict(testdata1)
        p12 = results.predict(testdata2)
        results.compact()
        p21 = results.predict(testdata1)
        p22 = results.predict(testdata2)
        self.assertEqual(refp1, refp2)
        self.assertEqual(refp1, p11)
        self.assertEqual(refp1, p12)
        # XXX these tests fail
        #self.assertEqual(refp1, p21)
        #self.assertEqual(refp1, p22)

    def check_no_support_vectors(self):
        x = N.array([[10.0, 20.0]])
        labels = [1]
        traindata = LibSvmClassificationDataSet(labels, x)
        kernel = LinearKernel()
        model = LibSvmCClassificationModel(kernel)
        testdata = LibSvmTestDataSet(x)
        self.assertRaises(ValueError, model.fit, traindata)

if __name__ == '__main__':
    NumpyTest().run()