File: test_regression.orig

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (177 lines) | stat: -rw-r--r-- 6,529 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from numpy.testing import *
import numpy as N

set_local_path('../..')
from svm.dataset import LibSvmRegressionDataSet, LibSvmTestDataSet
from svm.kernel import *
from svm.predict import *
from svm.regression import *
restore_path()

class test_regression(NumpyTestCase):
    def check_basics(self):
        Model = LibSvmEpsilonRegressionModel
        kernel = LinearKernel()
        Model(kernel)
        Model(kernel, epsilon=0.1)
        Model(kernel, cost=1.0)
        model = Model(kernel, shrinking=False)
        self.assert_(not model.shrinking)

        Model = LibSvmNuRegressionModel
        Model(kernel)
        Model(kernel, nu=0.5)
        model = Model(kernel, 0.5, cache_size=60, tolerance=0.005)
        self.assertEqual(model.cache_size, 60)
        self.assertAlmostEqual(model.tolerance, 0.005)

    def check_epsilon_train(self):
        ModelType = LibSvmEpsilonRegressionModel
        y = [10., 20., 30., 40.]
        x = [N.array([0, 0]),
             N.array([0, 1]),
             N.array([1, 0]),
             N.array([1, 1])]
        traindata = LibSvmRegressionDataSet(y, x)
        testdata = LibSvmTestDataSet(x)
        model = ModelType(LinearKernel(), probability=True)
        results = model.fit(traindata)
        results.predict(testdata)
        results.get_svr_probability()

    def _make_basic_datasets(self):
        labels = [0, 1.0, 1.0, 2.0]
        x = [N.array([0, 0]),
             N.array([0, 1]),
             N.array([1, 0]),
             N.array([1, 1])]
        traindata = LibSvmRegressionDataSet(labels, x)
        testdata = LibSvmTestDataSet(x)
        return traindata, testdata

    def _make_basic_kernels(self, gamma):
        kernels = [
            LinearKernel(),
            PolynomialKernel(3, gamma, 0.0),
            RBFKernel(gamma)
            ]
        return kernels

    def check_epsilon_more(self):
        ModelType = LibSvmEpsilonRegressionModel
        epsilon = 0.1
        cost = 10.0
        modelargs = epsilon, cost
        expected_ys = [
            N.array([0.1, 1.0, 1.0, 1.9]),
            N.array([0.24611273, 0.899866638, 0.90006681, 1.90006681]),
            N.array([0.1, 1.0, 1.0, 1.9])
            ]
        self._regression_basic(ModelType, modelargs, expected_ys)

    def _regression_basic(self, ModelType, modelargs, expected_ys):
        traindata, testdata = self._make_basic_datasets()
        kernels = self._make_basic_kernels(traindata.gamma)
        for kernel, expected_y in zip(kernels, expected_ys):
            args = (kernel,) + modelargs
            model = ModelType(*args)
            results = model.fit(traindata)
            predictions = results.predict(testdata)
            # use differences instead of assertAlmostEqual due to
            # compiler-dependent variations in these values
            diff = N.absolute(predictions - expected_y)
            self.assert_(N.alltrue(diff < 1e-3))

    def check_cross_validate(self):
        y = N.random.randn(100)
        x = N.random.randn(len(y), 10)
        traindata = LibSvmRegressionDataSet(y, x)
        kernel = LinearKernel()
        model = LibSvmEpsilonRegressionModel(kernel)
        nr_fold = 10
        mse, scc = model.cross_validate(traindata, nr_fold)

    def check_nu_more(self):
        ModelType = LibSvmNuRegressionModel
        nu = 0.4
        cost = 10.0
        modelargs = nu, cost
        expected_ys = [
            N.array([0.0, 1.0, 1.0, 2.0]),
            N.array([0.2307521, 0.7691364, 0.76930371, 1.769304]),
            N.array([0.0, 1.0, 1.0, 2.0])
            ]
        self._regression_basic(ModelType, modelargs, expected_ys)

    def _make_datasets(self):
        y1 = N.random.randn(50)
        x1 = N.random.randn(len(y1), 10)
        y2 = N.random.randn(5)
        x2 = N.random.randn(len(y2), x1.shape[1])
        trndata1 = LibSvmRegressionDataSet(y1, x1)
        trndata2 = LibSvmRegressionDataSet(y2, x2)
        refy = N.concatenate([y1, y2])
        refx = N.vstack([x1, x2])
        trndata = LibSvmRegressionDataSet(refy, refx)
        testdata = LibSvmTestDataSet(refx)
        return trndata, trndata1, trndata2, testdata

    def _make_kernels(self):
        def kernelf(x, y):
            return N.dot(x, y.T)
        def kernelg(x, y):
            return -N.dot(x, y.T)
        kernels = [LinearKernel()]
        kernels += [RBFKernel(gamma)
                    for gamma in [-0.1, 0.2, 0.3]]
        kernels += [PolynomialKernel(degree, gamma, coef0)
                    for degree, gamma, coef0 in
                    [(1, 0.1, 0.0), (2, -0.2, 1.3), (3, 0.3, -0.3)]]
        #kernels += [SigmoidKernel(gamma, coef0)
        #            for gamma, coef0 in [(0.2, -0.5), (-0.5, 1.5)]]
        kernels += [CustomKernel(f) for f in [kernelf, kernelg]]
        return kernels

    def check_all(self):
        trndata, trndata1, trndata2, testdata = self._make_datasets()
        kernels = self._make_kernels()
        for kernel in kernels:
            pctrndata1 = trndata1.precompute(kernel)
            pctrndata = pctrndata1.combine(trndata2)
            models = [
                LibSvmEpsilonRegressionModel(kernel, 1.0, 2.0),
                LibSvmNuRegressionModel(kernel, 0.4, 0.5)
                ]
            fitargs = []
            # CustomKernel needs a precomputed dataset
            if not isinstance(kernel, CustomKernel):
                fitargs += [
                    (trndata, LibSvmPredictor),
                    (trndata, LibSvmPythonPredictor),
                    ]
            fitargs += [
                (pctrndata, LibSvmPredictor),
                (pctrndata, LibSvmPythonPredictor)
                ]
            for model in models:
                refresults = model.fit(*fitargs[0])
                refrho = refresults.rho
                refp = refresults.predict(testdata)
                for args in fitargs[1:]:
                    results = model.fit(*args)
                    self.assertAlmostEqual(results.rho, refrho)
                    p = results.predict(testdata)
                    assert_array_almost_equal(refp, p)

    def check_compact(self):
        traindata, testdata = self._make_basic_datasets()
        kernel = LinearKernel()
        model = LibSvmEpsilonRegressionModel(LinearKernel())
        results = model.fit(traindata, LibSvmPythonPredictor)
        refp = results.predict(testdata)
        results.compact()
        p = results.predict(testdata)
        assert_array_equal(refp, p)

if __name__ == '__main__':
    NumpyTest().run()