1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
from numpy.testing import *
import numpy as N
set_local_path('../..')
from svm.dataset import LibSvmRegressionDataSet, LibSvmTestDataSet
from svm.kernel import *
from svm.predict import *
from svm.regression import *
restore_path()
class test_regression(NumpyTestCase):
def check_basics(self):
Model = LibSvmEpsilonRegressionModel
kernel = LinearKernel()
Model(kernel)
Model(kernel, epsilon=0.1)
Model(kernel, cost=1.0)
model = Model(kernel, shrinking=False)
self.assert_(not model.shrinking)
Model = LibSvmNuRegressionModel
Model(kernel)
Model(kernel, nu=0.5)
model = Model(kernel, 0.5, cache_size=60, tolerance=0.005)
self.assertEqual(model.cache_size, 60)
self.assertAlmostEqual(model.tolerance, 0.005)
def check_epsilon_train(self):
ModelType = LibSvmEpsilonRegressionModel
y = [10., 20., 30., 40.]
x = [N.array([0, 0]),
N.array([0, 1]),
N.array([1, 0]),
N.array([1, 1])]
traindata = LibSvmRegressionDataSet(y, x)
testdata = LibSvmTestDataSet(x)
model = ModelType(LinearKernel(), probability=True)
results = model.fit(traindata)
results.predict(testdata)
results.get_svr_probability()
def _make_basic_datasets(self):
labels = [0, 1.0, 1.0, 2.0]
x = [N.array([0, 0]),
N.array([0, 1]),
N.array([1, 0]),
N.array([1, 1])]
traindata = LibSvmRegressionDataSet(labels, x)
testdata = LibSvmTestDataSet(x)
return traindata, testdata
def _make_basic_kernels(self, gamma):
kernels = [
LinearKernel(),
PolynomialKernel(3, gamma, 0.0),
RBFKernel(gamma)
]
return kernels
def check_epsilon_more(self):
ModelType = LibSvmEpsilonRegressionModel
epsilon = 0.1
cost = 10.0
modelargs = epsilon, cost
expected_ys = [
N.array([0.1, 1.0, 1.0, 1.9]),
N.array([0.24611273, 0.899866638, 0.90006681, 1.90006681]),
N.array([0.1, 1.0, 1.0, 1.9])
]
self._regression_basic(ModelType, modelargs, expected_ys)
def _regression_basic(self, ModelType, modelargs, expected_ys):
traindata, testdata = self._make_basic_datasets()
kernels = self._make_basic_kernels(traindata.gamma)
for kernel, expected_y in zip(kernels, expected_ys):
args = (kernel,) + modelargs
model = ModelType(*args)
results = model.fit(traindata)
predictions = results.predict(testdata)
# use differences instead of assertAlmostEqual due to
# compiler-dependent variations in these values
diff = N.absolute(predictions - expected_y)
self.assert_(N.alltrue(diff < 1e-3))
def check_cross_validate(self):
y = N.random.randn(100)
x = N.random.randn(len(y), 10)
traindata = LibSvmRegressionDataSet(y, x)
kernel = LinearKernel()
model = LibSvmEpsilonRegressionModel(kernel)
nr_fold = 10
mse, scc = model.cross_validate(traindata, nr_fold)
def check_nu_more(self):
ModelType = LibSvmNuRegressionModel
nu = 0.4
cost = 10.0
modelargs = nu, cost
expected_ys = [
N.array([0.0, 1.0, 1.0, 2.0]),
N.array([0.2307521, 0.7691364, 0.76930371, 1.769304]),
N.array([0.0, 1.0, 1.0, 2.0])
]
self._regression_basic(ModelType, modelargs, expected_ys)
def _make_datasets(self):
y1 = N.random.randn(50)
x1 = N.random.randn(len(y1), 10)
y2 = N.random.randn(5)
x2 = N.random.randn(len(y2), x1.shape[1])
trndata1 = LibSvmRegressionDataSet(y1, x1)
trndata2 = LibSvmRegressionDataSet(y2, x2)
refy = N.concatenate([y1, y2])
refx = N.vstack([x1, x2])
trndata = LibSvmRegressionDataSet(refy, refx)
testdata = LibSvmTestDataSet(refx)
return trndata, trndata1, trndata2, testdata
def _make_kernels(self):
def kernelf(x, y):
return N.dot(x, y.T)
def kernelg(x, y):
return -N.dot(x, y.T)
kernels = [LinearKernel()]
kernels += [RBFKernel(gamma)
for gamma in [-0.1, 0.2, 0.3]]
kernels += [PolynomialKernel(degree, gamma, coef0)
for degree, gamma, coef0 in
[(1, 0.1, 0.0), (2, -0.2, 1.3), (3, 0.3, -0.3)]]
#kernels += [SigmoidKernel(gamma, coef0)
# for gamma, coef0 in [(0.2, -0.5), (-0.5, 1.5)]]
kernels += [CustomKernel(f) for f in [kernelf, kernelg]]
return kernels
def check_all(self):
trndata, trndata1, trndata2, testdata = self._make_datasets()
kernels = self._make_kernels()
for kernel in kernels:
pctrndata1 = trndata1.precompute(kernel)
pctrndata = pctrndata1.combine(trndata2)
models = [
LibSvmEpsilonRegressionModel(kernel, 1.0, 2.0),
LibSvmNuRegressionModel(kernel, 0.4, 0.5)
]
fitargs = []
# CustomKernel needs a precomputed dataset
if not isinstance(kernel, CustomKernel):
fitargs += [
(trndata, LibSvmPredictor),
(trndata, LibSvmPythonPredictor),
]
fitargs += [
(pctrndata, LibSvmPredictor),
(pctrndata, LibSvmPythonPredictor)
]
for model in models:
refresults = model.fit(*fitargs[0])
refrho = refresults.rho
refp = refresults.predict(testdata)
for args in fitargs[1:]:
results = model.fit(*args)
self.assertAlmostEqual(results.rho, refrho)
p = results.predict(testdata)
assert_array_almost_equal(refp, p)
def check_compact(self):
traindata, testdata = self._make_basic_datasets()
kernel = LinearKernel()
model = LibSvmEpsilonRegressionModel(LinearKernel())
results = model.fit(traindata, LibSvmPythonPredictor)
refp = results.predict(testdata)
results.compact()
p = results.predict(testdata)
assert_array_equal(refp, p)
if __name__ == '__main__':
NumpyTest().run()
|