File: gistdemomovie.py

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (250 lines) | stat: -rw-r--r-- 9,029 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
## Automatically adapted for scipy Oct 31, 2005 by

#!/usr/bin/env python
#  $Id: gistdemomovie.py 1698 2006-03-14 23:12:10Z cookedm $
#  ---------------------------------------------------------------------
#
#  NAME:     gistdemomovie.py
#
#  PURPOSE:  Mesh plotting demo
#  Adapted from demo2.i for yorick by Michiel de Hoon
#
#  CHANGES:
#  05/05/03 mdh Original conversion.
#
#  ---------------------------------------------------------------------
#    Copyright (c) 1995.  The Regents of the University of California.
#                   All rights reserved.

from gist import *

def run(which=None, time_limit=60):
    """Exhibit quadrilateral mesh plots in 3 movies of a drumhead.
      The drumhead is initially stationary, but has a bump near one
      edge.  Yorick is solving a 2D wave equation to compute the
      evolution of this bump.

      The first movie is a filled mesh plot with color "proportional"
      to the height of the surface of the drum.  A few well chosen
      contour levels (here 3) add a lot to a filled mesh plot.

      The second movie is a "3D" perspective plot of the height of the
      drumhead.  In this movie, the mesh lines are drawn, which is
      slightly confusing since the cells are not all the same shape.

      The second movie is a "3D" shaded plot of the height of the
      drumhead.  Yorick computes surface shading based on the angle
      of each cell from a light source.

      As you watch this, you might reflect on the two dimensionality
      of your retina.  What Yorick lacks by way of 3D graphics is
      really just fancy hidden surface algorithms; the simple
      painter's algorithm used here and in plwf.py is easy to
      implement.

      There are two optional arguments to demo2: the first is the
      number of the movie (1, 2, or 3) you want to watch; the second
      is a time limit on the duration of each movie in seconds (default
      is 60 seconds each)."""
    import movie
    global f, fdot, dt, x, y, level

    # generate a 30-by-30 cell mesh on the [-1,1] square
    x= span(-1, 1, 31, 31)
    y= transpose(x)
    # map the square mesh into a mesh on the unit circle
    # this mesh has more nearly equal area cells than a polar
    # coordinate circle
    scale= maximum(abs(y),abs(x))/(hypot(y,x)+1.e-30)
    x= x*scale
    y= y*scale

    f= exp(-8.*hypot(y+.67,x+.25)**2)*(1.-hypot(y,x)**2)
    f0 = array(f) # get an independent copy
    fdot= 0.0*f[1:-1,1:-1]

    lf= laplacian(f, y,x)
    xdz= x[1:,1:]+x[:-1,1:]-x[1:,:-1]-x[:-1,:-1]
    xzd= x[1:,1:]-x[:-1,1:]+x[1:,:-1]-x[:-1,:-1]
    ydz= y[1:,1:]+y[:-1,1:]-y[1:,:-1]-y[:-1,:-1]
    yzd= y[1:,1:]-y[:-1,1:]+y[1:,:-1]-y[:-1,:-1]
    dt= 0.1875*sqrt(min(min(abs(xdz*yzd - xzd*ydz))))

    window(0, wait=1, style="nobox.gs")
    palette("heat.gp")
    limits(-1, 1, -1, 1)

    # roll the filled mesh movie
    if which==None or which==1:
        fc= (f[1:,1:]+f[:-1,1:]+f[1:,:-1]+f[:-1,:-1]) / 4.
        cmin= cmax= max([max(abs(row)) for row in fc])
        cmin= -cmin
        level= cmax/4.
        display_plf(0)
        fixedlimits = limits()
        movie.movie(display_plf, time_limit, lims=fixedlimits, timing=1)
        # Note; movie_timing is a global variable in movie.py
        print movie.movie_timing[3], "frames of filled mesh drumhead completed in",
        print movie.movie_timing[2], "sec"
        print "Rate for filled mesh is",
        print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
        print "frames/(CPU sec),",
        print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
        print "frames(wall sec)"

    # roll the perspective movie */
    if which==None or which==2:
        f[:,:]= f0
        limits(-1,1,-1,1)
        display_plm(0)
        fixedlimits = limits()
        movie.movie(display_plm, time_limit, lims=fixedlimits, timing=1)
        print movie.movie_timing[3], "frames of wireframe surface drumhead completed in",
        print movie.movie_timing[2], "sec"
        print "Rate for filled mesh is",
        print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
        print "frames/(CPU sec),",
        print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
        print "frames(wall sec)"

    # roll the shaded movie
    if which==None or which==3:
        f[:,:]= f0
        limits(-1,1,-1,1)
        display_pl3(0)
        fixedlimits = limits()
        movie.movie(display_pl3, time_limit, lims=fixedlimits, timing=1)
        print movie.movie_timing[3], "frames of filled surface drumhead completed in",
        print movie.movie_timing[2], "sec"
        print "Rate for filled mesh is",
        print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
        print "frames/(CPU sec),",
        print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
        print "frames(wall sec)"

        fma()
        limits()

def display_plf(i):
    # display first
    global fdot,f,level
    fc= (f[1:,1:]+f[:-1,1:]+f[1:,:-1]+f[:-1,:-1]) / 4.
    cmin= cmax= max([max(abs(row)) for row in fc])
    cmin= -cmin
    plf(fc, -y, -x, cmin=cmin, cmax=cmax)
    # the 0 contour level is too noisy without some smoothing...
    ftemp = (f[1:,1:]+f[1:,:-1]+f[:-1,1:]+f[:-1,:-1])/4.
    fs = zeros(shape(f),'d')
    fs[1:,1:] = ftemp
    fs[:-1,1:] = fs[:-1,1:] + ftemp
    fs[1:,:-1] = fs[1:,:-1] + ftemp
    fs[:-1,:-1] = fs[:-1,:-1] + ftemp
    fs[:,1:-1] = fs[:,1:-1]/2.
    fs[1:-1,:] = fs[1:-1,:]/2.

    plc(fs, levs=[0.], marks=0, color="green", type="solid")
    plc(f,  levs=[level], marks=0, color="black", type="dash")
    plc(f,  levs=[-level], marks=0, color="green", type="dash")

    # then take a step forward in time
    lf= laplacian(f, y,x)
    fdot = fdot + lf*dt
    f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt

    return i<200

def display_plm(i):
    global fdot
    # display first
    pl3d(0, f, y, x)

    # then take a step forward in time
    lf= laplacian(f, y,x)
    fdot = fdot + lf*dt
    f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt

    return i<200

def display_pl3(i):
    global fdot
    # display first
    pl3d(1, f, y, x)

    # then take a step forward in time
    lf= laplacian(f, y,x)
    fdot = fdot + lf*dt
    f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt

    return i<200

def laplacian(f, y,x):
    # There are many ways to form the Laplacian as a finite difference.
    # This one is nice in Yorick.
    # Start with the two median vectors across each zone.
    fdz= (f[1:,1:]-f[1:,:-1]+f[:-1,1:]-f[:-1,:-1])/2.
    fzd= (f[1:,1:]+f[1:,:-1]-f[:-1,1:]-f[:-1,:-1])/2.
    xdz= (x[1:,1:]-x[1:,:-1]+x[:-1,1:]-x[:-1,:-1])/2.
    xzd= (x[1:,1:]+x[1:,:-1]-x[:-1,1:]-x[:-1,:-1])/2.
    ydz= (y[1:,1:]-y[1:,:-1]+y[:-1,1:]-y[:-1,:-1])/2.
    yzd= (y[1:,1:]+y[1:,:-1]-y[:-1,1:]-y[:-1,:-1])/2.

    # Estimate the gradient at the center of each cell.
    area= xdz*yzd - xzd*ydz
    gradfx= (fdz*yzd - fzd*ydz)/area
    gradfy= (xdz*fzd - xzd*fdz)/area

    # Now consider the mesh formed by the center points of the original.
    x= (x[1:,1:]+x[:-1,1:]+x[1:,:-1]+x[:-1,:-1]) / 4.
    y= (y[1:,1:]+y[:-1,1:]+y[1:,:-1]+y[:-1,:-1]) / 4.
    xdz= x[:,1:] - x[:,:-1]
    xzd= x[1:,:] - x[:-1,:]
    ydz= y[:,1:] - y[:,:-1]
    yzd= y[1:,:] - y[:-1,:]
    area= ((xdz[1:,:]+xdz[:-1,:])*(yzd[:,1:]+yzd[:,:-1]) -(xzd[:,1:]+xzd[:,:-1])*(ydz[1:,:]+ydz[:-1,:]))/4.
    term1 = xdz*(gradfy[:,1:]+gradfy[:,:-1])-ydz*(gradfx[:,1:]+gradfx[:,:-1])
    term2 = yzd*(gradfx[1:,:]+gradfx[:-1,:])-xzd*(gradfy[1:,:]+gradfy[:-1,:])

    return (term1[1:,:]-term1[:-1,:]+term2[:,1:]-term2[:,:-1]) / (2.*area)


def pl3d(shading, z, y, x):
    # rotate so that (zp,yp) are screen (y,x)
    # These orientations are cunningly chosen so that the painter's
    #  algorithm correctly draws hidden surfaces first -- see help, plf
    #  for a description of the order cells are drawn by plf.
    theta= 30. * pi/180.  # angle of viewer above drumhead
    phi= 120. * pi/180.

    ct= cos(phi)
    st= sin(phi)
    yp= y*ct - x*st
    xp= x*ct + y*st

    ct= cos(theta)
    st= sin(theta)
    zp= z*ct - xp*st
    xp= xp*ct + z*st

    if not shading:
        color= []
        edges= 1;
    else:
        # compute the two median vectors for each cell
        m0x= (xp[1:,1:]+xp[:-1,1:]-xp[1:,:-1]-xp[:-1,:-1])/2
        m0y= (yp[1:,1:]+yp[:-1,1:]-yp[1:,:-1]-yp[:-1,:-1])/2
        m0z= (zp[1:,1:]+zp[:-1,1:]-zp[1:,:-1]-zp[:-1,:-1])/2
        m1x= (xp[1:,1:]-xp[:-1,1:]+xp[1:,:-1]-xp[:-1,:-1])/2
        m1y= (yp[1:,1:]-yp[:-1,1:]+yp[1:,:-1]-yp[:-1,:-1])/2
        m1z= (zp[1:,1:]-zp[:-1,1:]+zp[1:,:-1]-zp[:-1,:-1])/2
        # define the normal vector to be their cross product
        nx= m0y*m1z - m0z*m1y
        ny= m0z*m1x - m0x*m1z
        nz= m0x*m1y - m0y*m1x
        n= sqrt(nx*nx+ny*ny+nz*nz)
        nx= nx / n
        ny= ny / n
        nz= nz / n
        color= bytscl(nx, cmin=0.0, cmax=1.0)
        edges= 0

    plf(color, zp, yp, edges=edges)