1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
## Automatically adapted for scipy Oct 31, 2005 by
#!/usr/bin/env python
# $Id: gistdemomovie.py 1698 2006-03-14 23:12:10Z cookedm $
# ---------------------------------------------------------------------
#
# NAME: gistdemomovie.py
#
# PURPOSE: Mesh plotting demo
# Adapted from demo2.i for yorick by Michiel de Hoon
#
# CHANGES:
# 05/05/03 mdh Original conversion.
#
# ---------------------------------------------------------------------
# Copyright (c) 1995. The Regents of the University of California.
# All rights reserved.
from gist import *
def run(which=None, time_limit=60):
"""Exhibit quadrilateral mesh plots in 3 movies of a drumhead.
The drumhead is initially stationary, but has a bump near one
edge. Yorick is solving a 2D wave equation to compute the
evolution of this bump.
The first movie is a filled mesh plot with color "proportional"
to the height of the surface of the drum. A few well chosen
contour levels (here 3) add a lot to a filled mesh plot.
The second movie is a "3D" perspective plot of the height of the
drumhead. In this movie, the mesh lines are drawn, which is
slightly confusing since the cells are not all the same shape.
The second movie is a "3D" shaded plot of the height of the
drumhead. Yorick computes surface shading based on the angle
of each cell from a light source.
As you watch this, you might reflect on the two dimensionality
of your retina. What Yorick lacks by way of 3D graphics is
really just fancy hidden surface algorithms; the simple
painter's algorithm used here and in plwf.py is easy to
implement.
There are two optional arguments to demo2: the first is the
number of the movie (1, 2, or 3) you want to watch; the second
is a time limit on the duration of each movie in seconds (default
is 60 seconds each)."""
import movie
global f, fdot, dt, x, y, level
# generate a 30-by-30 cell mesh on the [-1,1] square
x= span(-1, 1, 31, 31)
y= transpose(x)
# map the square mesh into a mesh on the unit circle
# this mesh has more nearly equal area cells than a polar
# coordinate circle
scale= maximum(abs(y),abs(x))/(hypot(y,x)+1.e-30)
x= x*scale
y= y*scale
f= exp(-8.*hypot(y+.67,x+.25)**2)*(1.-hypot(y,x)**2)
f0 = array(f) # get an independent copy
fdot= 0.0*f[1:-1,1:-1]
lf= laplacian(f, y,x)
xdz= x[1:,1:]+x[:-1,1:]-x[1:,:-1]-x[:-1,:-1]
xzd= x[1:,1:]-x[:-1,1:]+x[1:,:-1]-x[:-1,:-1]
ydz= y[1:,1:]+y[:-1,1:]-y[1:,:-1]-y[:-1,:-1]
yzd= y[1:,1:]-y[:-1,1:]+y[1:,:-1]-y[:-1,:-1]
dt= 0.1875*sqrt(min(min(abs(xdz*yzd - xzd*ydz))))
window(0, wait=1, style="nobox.gs")
palette("heat.gp")
limits(-1, 1, -1, 1)
# roll the filled mesh movie
if which==None or which==1:
fc= (f[1:,1:]+f[:-1,1:]+f[1:,:-1]+f[:-1,:-1]) / 4.
cmin= cmax= max([max(abs(row)) for row in fc])
cmin= -cmin
level= cmax/4.
display_plf(0)
fixedlimits = limits()
movie.movie(display_plf, time_limit, lims=fixedlimits, timing=1)
# Note; movie_timing is a global variable in movie.py
print movie.movie_timing[3], "frames of filled mesh drumhead completed in",
print movie.movie_timing[2], "sec"
print "Rate for filled mesh is",
print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
print "frames/(CPU sec),",
print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
print "frames(wall sec)"
# roll the perspective movie */
if which==None or which==2:
f[:,:]= f0
limits(-1,1,-1,1)
display_plm(0)
fixedlimits = limits()
movie.movie(display_plm, time_limit, lims=fixedlimits, timing=1)
print movie.movie_timing[3], "frames of wireframe surface drumhead completed in",
print movie.movie_timing[2], "sec"
print "Rate for filled mesh is",
print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
print "frames/(CPU sec),",
print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
print "frames(wall sec)"
# roll the shaded movie
if which==None or which==3:
f[:,:]= f0
limits(-1,1,-1,1)
display_pl3(0)
fixedlimits = limits()
movie.movie(display_pl3, time_limit, lims=fixedlimits, timing=1)
print movie.movie_timing[3], "frames of filled surface drumhead completed in",
print movie.movie_timing[2], "sec"
print "Rate for filled mesh is",
print movie.movie_timing[3]/(movie.movie_timing[0]-movie.movie_timing[4]+1.0e-4),
print "frames/(CPU sec),",
print movie.movie_timing[3]/(movie.movie_timing[2]-movie.movie_timing[4]+1.0e-4),
print "frames(wall sec)"
fma()
limits()
def display_plf(i):
# display first
global fdot,f,level
fc= (f[1:,1:]+f[:-1,1:]+f[1:,:-1]+f[:-1,:-1]) / 4.
cmin= cmax= max([max(abs(row)) for row in fc])
cmin= -cmin
plf(fc, -y, -x, cmin=cmin, cmax=cmax)
# the 0 contour level is too noisy without some smoothing...
ftemp = (f[1:,1:]+f[1:,:-1]+f[:-1,1:]+f[:-1,:-1])/4.
fs = zeros(shape(f),'d')
fs[1:,1:] = ftemp
fs[:-1,1:] = fs[:-1,1:] + ftemp
fs[1:,:-1] = fs[1:,:-1] + ftemp
fs[:-1,:-1] = fs[:-1,:-1] + ftemp
fs[:,1:-1] = fs[:,1:-1]/2.
fs[1:-1,:] = fs[1:-1,:]/2.
plc(fs, levs=[0.], marks=0, color="green", type="solid")
plc(f, levs=[level], marks=0, color="black", type="dash")
plc(f, levs=[-level], marks=0, color="green", type="dash")
# then take a step forward in time
lf= laplacian(f, y,x)
fdot = fdot + lf*dt
f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt
return i<200
def display_plm(i):
global fdot
# display first
pl3d(0, f, y, x)
# then take a step forward in time
lf= laplacian(f, y,x)
fdot = fdot + lf*dt
f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt
return i<200
def display_pl3(i):
global fdot
# display first
pl3d(1, f, y, x)
# then take a step forward in time
lf= laplacian(f, y,x)
fdot = fdot + lf*dt
f[1:-1,1:-1] = f[1:-1,1:-1] + fdot*dt
return i<200
def laplacian(f, y,x):
# There are many ways to form the Laplacian as a finite difference.
# This one is nice in Yorick.
# Start with the two median vectors across each zone.
fdz= (f[1:,1:]-f[1:,:-1]+f[:-1,1:]-f[:-1,:-1])/2.
fzd= (f[1:,1:]+f[1:,:-1]-f[:-1,1:]-f[:-1,:-1])/2.
xdz= (x[1:,1:]-x[1:,:-1]+x[:-1,1:]-x[:-1,:-1])/2.
xzd= (x[1:,1:]+x[1:,:-1]-x[:-1,1:]-x[:-1,:-1])/2.
ydz= (y[1:,1:]-y[1:,:-1]+y[:-1,1:]-y[:-1,:-1])/2.
yzd= (y[1:,1:]+y[1:,:-1]-y[:-1,1:]-y[:-1,:-1])/2.
# Estimate the gradient at the center of each cell.
area= xdz*yzd - xzd*ydz
gradfx= (fdz*yzd - fzd*ydz)/area
gradfy= (xdz*fzd - xzd*fdz)/area
# Now consider the mesh formed by the center points of the original.
x= (x[1:,1:]+x[:-1,1:]+x[1:,:-1]+x[:-1,:-1]) / 4.
y= (y[1:,1:]+y[:-1,1:]+y[1:,:-1]+y[:-1,:-1]) / 4.
xdz= x[:,1:] - x[:,:-1]
xzd= x[1:,:] - x[:-1,:]
ydz= y[:,1:] - y[:,:-1]
yzd= y[1:,:] - y[:-1,:]
area= ((xdz[1:,:]+xdz[:-1,:])*(yzd[:,1:]+yzd[:,:-1]) -(xzd[:,1:]+xzd[:,:-1])*(ydz[1:,:]+ydz[:-1,:]))/4.
term1 = xdz*(gradfy[:,1:]+gradfy[:,:-1])-ydz*(gradfx[:,1:]+gradfx[:,:-1])
term2 = yzd*(gradfx[1:,:]+gradfx[:-1,:])-xzd*(gradfy[1:,:]+gradfy[:-1,:])
return (term1[1:,:]-term1[:-1,:]+term2[:,1:]-term2[:,:-1]) / (2.*area)
def pl3d(shading, z, y, x):
# rotate so that (zp,yp) are screen (y,x)
# These orientations are cunningly chosen so that the painter's
# algorithm correctly draws hidden surfaces first -- see help, plf
# for a description of the order cells are drawn by plf.
theta= 30. * pi/180. # angle of viewer above drumhead
phi= 120. * pi/180.
ct= cos(phi)
st= sin(phi)
yp= y*ct - x*st
xp= x*ct + y*st
ct= cos(theta)
st= sin(theta)
zp= z*ct - xp*st
xp= xp*ct + z*st
if not shading:
color= []
edges= 1;
else:
# compute the two median vectors for each cell
m0x= (xp[1:,1:]+xp[:-1,1:]-xp[1:,:-1]-xp[:-1,:-1])/2
m0y= (yp[1:,1:]+yp[:-1,1:]-yp[1:,:-1]-yp[:-1,:-1])/2
m0z= (zp[1:,1:]+zp[:-1,1:]-zp[1:,:-1]-zp[:-1,:-1])/2
m1x= (xp[1:,1:]-xp[:-1,1:]+xp[1:,:-1]-xp[:-1,:-1])/2
m1y= (yp[1:,1:]-yp[:-1,1:]+yp[1:,:-1]-yp[:-1,:-1])/2
m1z= (zp[1:,1:]-zp[:-1,1:]+zp[1:,:-1]-zp[:-1,:-1])/2
# define the normal vector to be their cross product
nx= m0y*m1z - m0z*m1y
ny= m0z*m1x - m0x*m1z
nz= m0x*m1y - m0y*m1x
n= sqrt(nx*nx+ny*ny+nz*nz)
nx= nx / n
ny= ny / n
nz= nz / n
color= bytscl(nx, cmin=0.0, cmax=1.0)
edges= 0
plf(color, zp, yp, edges=edges)
|