1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
## Automatically adapted for scipy Oct 21, 2005 by convertcode.py
import numpy as sb
import scipy as s
def daub(p):
"""The coefficients for the FIR low-pass filter producing Daubechies wavelets.
p>=1 gives the order of the zero at f=1/2. There are 2p filter coefficients.
"""
sqrt = sb.sqrt
assert(p>=1)
if p==1:
c = 1/sqrt(2)
return sb.array([c,c])
elif p==2:
f = sqrt(2)/8
c = sqrt(3)
return f*sb.array([1+c,3+c,3-c,1-c])
elif p==3:
tmp = 12*sqrt(10)
z1 = 1.5 + sqrt(15+tmp)/6 - 1j*(sqrt(15)+sqrt(tmp-15))/6
z1c = sb.conj(z1)
f = sqrt(2)/8
d0 = sb.real((1-z1)*(1-z1c))
a0 = sb.real(z1*z1c)
a1 = 2*sb.real(z1)
return f/d0*sb.array([a0, 3*a0-a1, 3*a0-3*a1+1, a0-3*a1+3, 3-a1, 1])
elif p<35:
# construct polynomial and factor it
if p<35:
P = [s.comb(p-1+k,k,exact=1) for k in range(p)][::-1]
yj = sb.roots(P)
else: # try different polynomial --- needs work
P = [s.comb(p-1+k,k,exact=1)/4.0**k for k in range(p)][::-1]
yj = sb.roots(P) / 4
# for each root, compute two z roots, select the one with |z|>1
# Build up final polynomial
c = sb.poly1d([1,1])**p
q = sb.poly1d([1])
for k in range(p-1):
yval = yj[k]
part = 2*sqrt(yval*(yval-1))
const = 1-2*yval
z1 = const + part
if (abs(z1)) < 1:
z1 = const - part
q = q * [1,-z1]
q = sb.real(q) * c
# Normalize result
q = q / sb.sum(q) * sqrt(2)
return q.c[::-1]
else:
raise ValueError, "Polynomial factorization does not work "\
"well for p too large."
def qmf(hk):
"""Return high-pass qmf filter from low-pass
"""
N = len(hk)-1
asgn = [{0:1,1:-1}[k%2] for k in range(N+1)]
return hk[::-1]*sb.array(asgn)
def wavedec(amn,hk):
gk = qmf(hk)
return NotImplemented
def cascade(hk,J=7):
"""(x,phi,psi) at dyadic points K/2**J from filter coefficients.
Inputs:
hk -- coefficients of low-pass filter
J -- values will be computed at grid points $K/2^J$
Outputs:
x -- the dyadic points $K/2^J$ for $K=0...N*2^J-1$
where len(hk)=len(gk)=N+1
phi -- the scaling function phi(x) at x
$\phi(x) = \sum_{k=0}^{N} h_k \phi(2x-k)$
psi -- the wavelet function psi(x) at x
$\psi(x) = \sum_{k=0}^N g_k \phi(2x-k)$
Only returned if gk is not None
Algorithm:
Uses the vector cascade algorithm described by Strang and Nguyen in
"Wavelets and Filter Banks"
Builds a dictionary of values and slices for quick reuse.
Then inserts vectors into final vector at then end
"""
N = len(hk)-1
if (J > 30 - sb.log2(N+1)):
raise ValueError, "Too many levels."
if (J < 1):
raise ValueError, "Too few levels."
# construct matrices needed
nn,kk = sb.ogrid[:N,:N]
s2 = sb.sqrt(2)
# append a zero so that take works
thk = sb.r_[hk,0]
gk = qmf(hk)
tgk = sb.r_[gk,0]
indx1 = sb.clip(2*nn-kk,-1,N+1)
indx2 = sb.clip(2*nn-kk+1,-1,N+1)
m = sb.zeros((2,2,N,N),'d')
m[0,0] = sb.take(thk,indx1,0)
m[0,1] = sb.take(thk,indx2,0)
m[1,0] = sb.take(tgk,indx1,0)
m[1,1] = sb.take(tgk,indx2,0)
m *= s2
# construct the grid of points
x = sb.arange(0,N*(1<<J),dtype=sb.Float) / (1<<J)
phi = 0*x
psi = 0*x
# find phi0, and phi1
lam, v = s.linalg.eig(m[0,0])
ind = sb.argmin(sb.absolute(lam-1))
# a dictionary with a binary representation of the
# evaluation points x < 1 -- i.e. position is 0.xxxx
v = sb.real(v[:,ind])
# need scaling function to integrate to 1 so find
# eigenvector normalized to sum(v,axis=0)=1
sm = sb.sum(v)
if sm < 0: # need scaling function to integrate to 1
v = -v
sm = -sm
bitdic = {}
bitdic['0'] = v / sm
bitdic['1'] = sb.dot(m[0,1],bitdic['0'])
step = 1<<J
phi[::step] = bitdic['0']
phi[(1<<(J-1))::step] = bitdic['1']
psi[::step] = sb.dot(m[1,0],bitdic['0'])
psi[(1<<(J-1))::step] = sb.dot(m[1,1],bitdic['0'])
# descend down the levels inserting more and more values
# into bitdic -- store the values in the correct location once we
# have computed them -- stored in the dictionary
# for quicker use later.
prevkeys = ['1']
for level in range(2,J+1):
newkeys = ['%d%s' % (xx,yy) for xx in [0,1] for yy in prevkeys]
fac = 1<<(J-level)
for key in newkeys:
# convert key to number
num = 0
for pos in range(level):
if key[pos] == '1':
num += (1<<(level-1-pos))
pastphi = bitdic[key[1:]]
ii = int(key[0])
temp = sb.dot(m[0,ii],pastphi)
bitdic[key] = temp
phi[num*fac::step] = temp
psi[num*fac::step] = sb.dot(m[1,ii],pastphi)
prevkeys = newkeys
return x, phi, psi
|