File: spblas.f.src

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (432 lines) | stat: -rw-r--r-- 11,914 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
c    -*- fortran -*-
c    author:  travis e. oliphant, 2004
c
c    computational tools for sparse matrices in <_t>
c
c    add two matrices in compressed sparse column format
c        this assumes that the rowa indices are sorted for each column
c        and indexes are 0-based

      subroutine <_c>cscadd(n,a,rowa,ptra,nnzamax,b,rowb,ptrb,nnzbmax,
     $     c,rowc,ptrc,nnzcmax,ierr)
      <_t> a(0:nnzamax-1), b(0:nnzbmax-1)
      <_t> c(0:nnzcmax-1), val
      integer n, rowa(0:nnzamax-1), rowb(0:nnzbmax-1), rowc(0:nnzcmax-1)
      integer ptra(0:n), ptrb(0:n), ptrc(0:n), nnzamax, nnzbmax
      integer ia, ib, ra, rb, j, nnzcmax
      integer ierr, nnzc
      
      ierr=0
      nnzc=0
      ia=ptra(0)
      ib=ptrb(0)

c  is there a need to initialize the output arrays?  assume no for now.
c      do j = 0, n
c         ptrc(j) = 0
c      end do
c      do j = 0, nnzcmax-1
c         rowc(j) = 0
c         c(j) = 0.0
c      end do

      do j = 0, n-1
         iamax = ptra(j+1)
         ibmax = ptrb(j+1)
         do while ((ia.lt.iamax).and.(ib.lt.ibmax))
            ra = rowa(ia)
            rb = rowb(ib)
            if (ra.eq.rb) then
c     this is a common element
               val = a(ia) + b(ib)
               ia = ia + 1
               ib = ib + 1
               if (val.eq.0.0) goto 10
               if (nnzc.ge.nnzcmax) goto 999
               c(nnzc) = val
               rowc(nnzc) = ra
            else if (ra .lt. rb) then
c     a has this but not b
               val = a(ia)
               ia = ia + 1 
               if (val.eq.0.0) goto 10 
               if (nnzc.ge.nnzcmax) goto 999
               c(nnzc) = val
               rowc(nnzc) = ra
            else
c     b has this but not a
               val = b(ib)
               ib = ib + 1
               if (val.eq.0.0) goto 10
               if (nnzc.ge.nnzcmax) goto 999
               c(nnzc) = val
               rowc(nnzc) = rb
            end if
            ptrc(j+1) = ptrc(j+1) + 1
            nnzc = nnzc + 1
 10         continue
         end do
         
         if (ia .eq. iamax) then
c     all finished with a for this column just copy the rest from b
            do while (ib .lt. ibmax)
               val = b(ib)
               rb = rowb(ib)
               ib = ib+1
               if (val.ne.0.0) then
                  if (nnzc.ge.nnzcmax) goto 999
                  c(nnzc) = val
                  rowc(nnzc) = rb
                  ptrc(j+1) = ptrc(j+1) + 1
                  nnzc = nnzc + 1
               end if
            end do
         else if (ib .eq. ibmax) then
c     all finished with b for this column just copy the rest from a
            do while (ia .lt. iamax)
               val = a(ia)
               ra = rowa(ia)
               ia = ia + 1
               if (val.ne.0.0) then
                  if (nnzc.ge.nnzcmax) goto 999
                  c(nnzc) = val
                  rowc(nnzc) = ra
                  ptrc(j+1) = ptrc(j+1) + 1
                  nnzc = nnzc + 1
               end if
            end do
         end if 
      end do

c   successful completion (fix the ptr array)
      cumsum = 0
      do k = 1, n
         cumsum = cumsum + ptrc(k)
         ptrc(k) = cumsum         
      end do
      return
      
      
 999  continue
      ierr = 1
      return
      end subroutine <_c>cscadd

c     element-by-element multiplication
c     can have at most the minimum of nnzamax and nnzbmax

      subroutine <_c>cscmul(n,a,rowa,ptra,nnzamax,b,rowb,ptrb,nnzbmax,
     $     c,rowc,ptrc,nnzcmax,ierr)
      <_t> a(0:nnzamax-1), b(0:nnzbmax-1)
      <_t> c(0:nnzcmax-1), val
      integer n, rowa(0:nnzamax-1), rowb(0:nnzbmax-1), rowc(0:nnzcmax-1)
      integer ptra(0:n), ptrb(0:n), ptrc(0:n), nnzamax, nnzbmax
      integer ia, ib, ra, rb, j, nnzcmax
      integer ierr, k, cumsum
      
      ierr=0
      nnzc=0
      ia=ptra(0)
      ib=ptrb(0)
      do j = 0, n-1
         iamax = ptra(j+1)
         ibmax = ptrb(j+1)
         do while ((ia.lt.iamax).and.(ib.lt.ibmax))
            ra = rowa(ia)
            rb = rowb(ib)
            if (ra.eq.rb) then
c     this is a common element
               val = a(ia)*b(ib)
               ia = ia + 1
               ib = ib + 1
               if (val.eq.0.0) goto 10
               if (nnzc.ge.nnzcmax) goto 999
               c(nnzc) = val
               rowc(nnzc) = ra
               ptrc(j+1) = ptrc(j+1) + 1
               nnzc = nnzc + 1
            else if (ra .lt. rb) then
c     a has this but not b
               ia = ia + 1
            else
c     b has this but not a
               ib = ib + 1
            end if
 10         continue
         end do
      end do
      
c   successful completion (fix the ptr array)
      cumsum = 0
      do k = 1, n
         cumsum = cumsum + ptrc(k)
         ptrc(k) = cumsum         
      end do

      return
      
 999  continue
      ierr = 1
      return
      end subroutine <_c>cscmul


c  matrix-vector multiplication

      subroutine <_c>cscmux(a,rowa,ptra,nnzamax,ncol,x,mrow,y)
      <_t> a(0:nnzamax-1), x(0:ncol-1), y(0:mrow-1)
      integer rowa(0:nnzamax-1), ptra(0:ncol)
      integer nnzamax, mrow, ncol
      integer i, j, ia, ra
      
      do i = 0, mrow-1
         y(i) = 0.0
      end do

      do j = 0, ncol-1
         do ia = ptra(j), ptra(j+1)-1
            ra = rowa(ia)
            y(ra) = y(ra) + a(ia)*x(j)
         end do
      end do

      return
      end subroutine <_c>cscmux


      subroutine <_c>csrmux(a,cola,ptra,nnzamax,ncol,x,mrow,y)
      <_t> a(0:nnzamax-1),x(0:ncol-1),y(0:mrow-1)
      integer cola(0:nnzamax-1), ptra(0:mrow)
      integer nnzamax, mrow, ncol
      integer i, ja, ca
      
      do i = 0, mrow-1
         y(i) = 0.0
         do ja = ptra(i), ptra(i+1)-1
            ca = cola(ja)
            y(i) = y(i) + a(ja)*x(ca)           
         end do
      end do

      return
      end subroutine <_c>csrmux


c     matrix multiplication
c             c = a * b
c
c     where c is mxn csc matrix 
c           a is mxk csc matrix
c           b is kxn csr matrix
c
c     irow and kcol give position to start 
c     nnzc gives current last element in output array (initialize to 0)
c     intended to recall so that calculation can continue 
c     if memory ran-out at last attempt



      subroutine <_c>cscmucsr(m,k,n, a,rowa,ptra,nnzamax, b,colb,ptrb,
     $     nnzbmax, c,rowc,ptrc,nnzcmax, irow,kcol,ierr)

      <_t> a(0:nnzamax-1), b(0:nnzbmax-1), c(0:nnzcmax-1)
      integer rowa(0:nnzamax-1), colb(0:nnzbmax-1), rowc(0:nnzcmax-1)
      integer ptra(0:k), ptrb(0:k), ptrc(0:n)
      integer nnzamax, nnzbmax, nnzcmax
      integer m, k, n, irow, kcol, ierr, cumsum

      integer kk, ii, jjb, jb, cb, ia, nnzc
      <_t> val


      nnzc = ierr
      ierr = 0
      do kk = kcol, n-1
         do ii = irow, m-1
            if (nnzc.ge.nnzcmax) goto 999
            irow = 0
            val = 0.0
c   loop through the column array of b using the ptrb array
c        so that we know which row we are on.
            do jjb = 0, k-1
               do jb = ptrb(jjb), ptrb(jjb+1)-1
                  cb = colb(jb)
                  if (cb.eq.kk) then
c     see if aij is nonzero and if so add to val
                     do ia = ptra(jjb), ptra(jjb+1)-1
                        if (rowa(ia).eq.ii) then
                           val = val + a(ia)*b(jb)
                        end if
                     end do
                  end if
               end do
            end do
            if (val.ne.0.0) then
c     there is a non-zero value for this value of i and k
               c(nnzc) = val
               rowc(nnzc) = ii
               ptrc(kk+1) = ptrc(kk+1) + 1
               nnzc = nnzc+1               
            end if
         end do         
      end do

c   successful completion (fix the ptr array)
      cumsum = 0
      do kk = 1, n
         cumsum = cumsum + ptrc(kk)
         ptrc(kk) = cumsum         
      end do
      return

      return

 999  continue
      kcol = kk
      irow = ii
      ierr = nnzc

      return
      end subroutine <_c>cscmucsr



c     matrix multiplication
c             c = a * b
c
c     where c is mxn csc matrix 
c           a is mxk csr matrix
c           b is kxn csc matrix
c
c     irow and jcol give position to start 
c     bnum gives current size of output array
c     intended to recall so that calculation can continue 
c     where it left off if memory runs-out during calculation
c
      subroutine <_c>csrmucsc(m,n,a,cola,ptra,nnzamax,b,rowb,ptrb,
     $     nnzbmax,c,rowc,ptrc,nnzcmax,irow,kcol,ierr)

      <_t> a(0:nnzamax-1), b(0:nnzbmax-1), c(0:nnzcmax-1)
      integer cola(0:nnzamax-1), rowb(0:nnzbmax-1), rowc(0:nnzcmax-1)
      integer ptra(0:m), ptrb(0:n), ptrc(0:n)
      integer nnzamax, nnzbmax, nnzcmax
      integer m, n, irow, kcol, ierr, cumsum

      integer kk, ii, nnzc
      <_t> val

      nnzc = ierr
      ierr = 0
      do kk = kcol, n-1
         do ii = irow, m-1
            if (nnzc.ge.nnzcmax) goto 999
            irow = 0
            val = 0.0
c   loop through the non-zero rows of b
            do ib = ptrb(kk), ptrb(kk+1)-1
               rb = rowb(ib)
               do ja = ptra(ii), ptra(ii+1)-1
                  if (cola(ja).eq.rb) then
                     val = val + a(ja)*b(ib)
                  end if
               end do
            end do
            if (val.ne.0.0) then
c     there is a non-zero value for this value of i and k
               c(nnzc) = val
               rowc(nnzc) = ii
               ptrc(kk+1) = ptrc(kk+1) + 1
               nnzc = nnzc+1 
            end if
         end do
      end do

c   successful completion (fix the ptr array)
      cumsum = 0
      do kk = 1, n
         cumsum = cumsum + ptrc(kk)
         ptrc(kk) = cumsum         
      end do
      return


      return

 999  continue
      kcol = kk
      irow = ii
      ierr = nnzc

      return
      end subroutine <_c>csrmucsc


c     matrix-matrix multiplication
c
c          c = a * b    where  a, b, and c are 
c                       compressed sparse column matrices
c
c     or it computes
c
c          c = b * a    where  b, a, and c are 
c                       compressed sparse row matrices
c   
c     intentended for re-entry if nnzcmax is not big enough

      subroutine <_c>cscmucsc(m,k,n,a,rowa,ptra,nnzamax,b,rowb,ptrb,
     $     nnzbmax,c,rowc,ptrc,nnzcmax,irow,kcol,ierr)

      <_t> a(0:nnzamax-1), b(0:nnzbmax-1), c(0:nnzcmax-1)
      integer rowa(0:nnzamax-1), rowb(0:nnzbmax-1), rowc(0:nnzcmax-1)
      integer ptra(0:k), ptrb(0:n), ptrc(0:n)
      integer nnzamax, nnzbmax, nnzcmax
      integer m, k, n, irow, kcol, ierr

      integer kk, ii, jb, ia, ra, nnzc, cumsum
      <_t> val
      
      nnzc = ierr
      ierr = 0
      do kk = kcol, n-1
         do ii = irow, m-1
            if (nnzc.ge.nnzcmax) goto 999
c   reset the irow to 0
            irow = 0
            val = 0.0
c   loop through the row array of b for this column
            do jb = ptrb(kk), ptrb(kk+1)-1
               ra = rowb(jb)
               do ia = ptra(ra), ptra(ra+1)-1
c     see if aij is nonzero and if so add to val
                  if (rowa(ia).eq.ii) then
                        val = val + a(ia)*b(jb)
                  end if
               end do
            end do
            if (val.ne.0.0) then
c     there is a non-zero value for this value of i and k
               c(nnzc) = val
               rowc(nnzc) = ii
               ptrc(kk+1) = ptrc(kk+1) + 1
               nnzc = nnzc+1               
            end if
         end do         
      end do

c   successful completion (fix the ptr array)
      cumsum = 0
      do kk = 1, n
         cumsum = cumsum + ptrc(kk)
         ptrc(kk) = cumsum         
      end do
      return
      
 999  continue
      kcol = kk
      irow = ii
      ierr = nnzc
      
      return
      end subroutine <_c>cscmucsc