File: btdtr.c

package info (click to toggle)
python-scipy 0.5.2-0.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 33,888 kB
  • ctags: 44,231
  • sloc: ansic: 156,256; cpp: 90,347; python: 89,604; fortran: 73,083; sh: 1,318; objc: 424; makefile: 342
file content (68 lines) | stat: -rw-r--r-- 1,070 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

/*							btdtr.c
 *
 *	Beta distribution
 *
 *
 *
 * SYNOPSIS:
 *
 * double a, b, x, y, btdtr();
 *
 * y = btdtr( a, b, x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the area from zero to x under the beta density
 * function:
 *
 *
 *                          x
 *            -             -
 *           | (a+b)       | |  a-1      b-1
 * P(x)  =  ----------     |   t    (1-t)    dt
 *           -     -     | |
 *          | (a) | (b)   -
 *                         0
 *
 *
 * This function is identical to the incomplete beta
 * integral function incbet(a, b, x).
 *
 * The complemented function is
 *
 * 1 - P(1-x)  =  incbet( b, a, x );
 *
 *
 * ACCURACY:
 *
 * See incbet.c.
 *
 */

/*								btdtr()	*/


/*
Cephes Math Library Release 2.0:  April, 1987
Copyright 1984, 1987, 1995 by Stephen L. Moshier
*/

#include "mconf.h"

#define ANSIPROT
#ifndef ANSIPROT
double incbet();
#else
extern double incbet ( double aa, double bb, double xx );
double btdtr( double,double,double );
#endif

double btdtr( a, b, x )
double a, b, x;
{

return( incbet( a, b, x ) );
}