1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
|
/* hyp2f1.c
*
* Gauss hypergeometric function F
* 2 1
*
*
* SYNOPSIS:
*
* double a, b, c, x, y, hyp2f1();
*
* y = hyp2f1( a, b, c, x );
*
*
* DESCRIPTION:
*
*
* hyp2f1( a, b, c, x ) = F ( a, b; c; x )
* 2 1
*
* inf.
* - a(a+1)...(a+k) b(b+1)...(b+k) k+1
* = 1 + > ----------------------------- x .
* - c(c+1)...(c+k) (k+1)!
* k = 0
*
* Cases addressed are
* Tests and escapes for negative integer a, b, or c
* Linear transformation if c - a or c - b negative integer
* Special case c = a or c = b
* Linear transformation for x near +1
* Transformation for x < -0.5
* Psi function expansion if x > 0.5 and c - a - b integer
* Conditionally, a recurrence on c to make c-a-b > 0
*
* x < -1 AMS 15.3.7 transformation applied (Travis Oliphant)
* valid for b,a,c,(b-a) != integer and (c-a),(c-b) != negative integer
*
* x >= 1 is rejected (unless special cases are present)
*
* The parameters a, b, c are considered to be integer
* valued if they are within 1.0e-14 of the nearest integer
* (1.0e-13 for IEEE arithmetic).
*
* ACCURACY:
*
*
* Relative error (-1 < x < 1):
* arithmetic domain # trials peak rms
* IEEE -1,7 230000 1.2e-11 5.2e-14
*
* Several special cases also tested with a, b, c in
* the range -7 to 7.
*
* ERROR MESSAGES:
*
* A "partial loss of precision" message is printed if
* the internally estimated relative error exceeds 1^-12.
* A "singularity" message is printed on overflow or
* in cases not addressed (such as x < -1).
*/
/* hyp2f1 */
/*
Cephes Math Library Release 2.8: June, 2000
Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef DEC
#define EPS 1.0e-14
#define EPS2 1.0e-11
#endif
#ifdef IBMPC
#define EPS 1.0e-13
#define EPS2 1.0e-10
#endif
#ifdef MIEEE
#define EPS 1.0e-13
#define EPS2 1.0e-10
#endif
#ifdef UNK
#define EPS 1.0e-13
#define EPS2 1.0e-10
#endif
#define ETHRESH 1.0e-12
#ifdef ANSIPROT
extern double fabs ( double );
extern double pow ( double, double );
extern double round ( double );
extern double gamma ( double );
extern double log ( double );
extern double exp ( double );
extern double psi ( double );
static double hyt2f1(double, double, double, double, double *);
static double hys2f1(double, double, double, double, double *);
double hyp2f1(double, double, double, double);
#else
double fabs(), pow(), round(), gamma(), log(), exp(), psi();
static double hyt2f1();
static double hys2f1();
double hyp2f1();
#endif
extern double MAXNUM, MACHEP, NAN;
double hyp2f1( a, b, c, x )
double a, b, c, x;
{
double d, d1, d2, e;
double p, q, r, s, y, ax;
double ia, ib, ic, id, err;
int i, aid;
int neg_int_a = 0, neg_int_b = 0;
int neg_int_ca_or_cb = 0;
err = 0.0;
ax = fabs(x);
s = 1.0 - x;
ia = round(a); /* nearest integer to a */
ib = round(b);
if (x == 0.0) {
return 1.0;
}
d = c - a - b;
if (d <= -1) {
return pow(s, d) * hyp2f1(c-a, c-b, c, x);
}
if (d <= 0 && x == 1)
goto hypdiv;
if (a <= 0 && fabs(a-ia) < EPS ) { /* a is a negative integer */
neg_int_a = 1;
}
if (b <= 0 && fabs(b-ib) < EPS ) { /* b is a negative integer */
neg_int_b = 1;
}
if (ax < 1.0 || x == -1.0) {
/* 2F1(a,b;b;x) = (1-x)**(-a) */
if( fabs(b-c) < EPS ) { /* b = c */
y = pow( s, -a ); /* s to the -a power */
goto hypdon;
}
if( fabs(a-c) < EPS ) { /* a = c */
y = pow( s, -b ); /* s to the -b power */
goto hypdon;
}
}
if( c <= 0.0 )
{
ic = round(c); /* nearest integer to c */
if( fabs(c-ic) < EPS ) /* c is a negative integer */
{
/* check if termination before explosion */
if( neg_int_a && (ia > ic) )
goto hypok;
if( neg_int_b && (ib > ic) )
goto hypok;
goto hypdiv;
}
}
if (neg_int_a || neg_int_b) /* function is a polynomial */
goto hypok;
if (x < -1.0) {
double t1;
t1 = fabs(b - a);
if (fabs(t1 - round(t1)) < EPS) {
/* this transformation has a pole for b-a= +-integer */
goto hypdiv;
}
p = hyp2f1(a, 1-c+a, 1-b+a, 1.0/x);
q = hyp2f1(b, 1-c+b, 1-a+b, 1.0/x);
p *= pow(-x, -a);
q *= pow(-x, -b);
t1 = gamma(c);
s = t1*gamma(b-a)/(gamma(b)*gamma(c-a));
y = t1*gamma(a-b)/(gamma(a)*gamma(c-b));
return s*p + y*q;
}
if( ax > 1.0 ) /* series diverges */
goto hypdiv;
p = c - a;
ia = round(p); /* nearest integer to c-a */
if( (ia <= 0.0) && (fabs(p-ia) < EPS) ) /* negative int c - a */
neg_int_ca_or_cb = 1;
r = c - b;
ib = round(r); /* nearest integer to c-b */
if( (ib <= 0.0) && (fabs(r-ib) < EPS) ) /* negative int c - b */
neg_int_ca_or_cb = 1;
id = round(d); /* nearest integer to d */
q = fabs(d-id);
/* Thanks to Christian Burger <BURGER@DMRHRZ11.HRZ.Uni-Marburg.DE>
* for reporting a bug here. */
if( fabs(ax-1.0) < EPS ) { /* |x| == 1.0 */
if( x > 0.0 ) {
if (neg_int_ca_or_cb) {
if( d >= 0.0 )
goto hypf;
else
goto hypdiv;
}
if( d <= 0.0 )
goto hypdiv;
y = gamma(c)*gamma(d)/(gamma(p)*gamma(r));
goto hypdon;
}
if( d <= -1.0 )
goto hypdiv;
}
/* Conditionally make d > 0 by recurrence on c
* AMS55 #15.2.27
*/
if( d < 0.0 )
{
/* Try the power series first */
y = hyt2f1( a, b, c, x, &err );
if( err < ETHRESH )
goto hypdon;
/* Apply the recurrence if power series fails */
err = 0.0;
aid = 2 - id;
e = c + aid;
d2 = hyp2f1(a,b,e,x);
d1 = hyp2f1(a,b,e+1.0,x);
q = a + b + 1.0;
for( i=0; i<aid; i++ )
{
r = e - 1.0;
y = (e*(r-(2.0*e-q)*x)*d2 + (e-a)*(e-b)*x*d1)/(e*r*s);
e = r;
d1 = d2;
d2 = y;
}
goto hypdon;
}
if (neg_int_ca_or_cb)
goto hypf; /* negative integer c-a or c-b */
hypok:
y = hyt2f1( a, b, c, x, &err );
hypdon:
if( err > ETHRESH )
{
mtherr( "hyp2f1", PLOSS );
/* printf( "Estimated err = %.2e\n", err ); */
}
return(y);
/* The transformation for c-a or c-b negative integer
* AMS55 #15.3.3
*/
hypf:
y = pow( s, d ) * hys2f1( c-a, c-b, c, x, &err );
goto hypdon;
/* The alarm exit */
hypdiv:
mtherr( "hyp2f1", OVERFLOW );
return( MAXNUM );
}
/* Apply transformations for |x| near 1
* then call the power series
*/
static double hyt2f1( a, b, c, x, loss )
double a, b, c, x;
double *loss;
{
double p, q, r, s, t, y, d, err, err1;
double ax, id, d1, d2, e, y1;
int i, aid;
err = 0.0;
s = 1.0 - x;
if( x < -0.5 )
{
if( b > a )
y = pow( s, -a ) * hys2f1( a, c-b, c, -x/s, &err );
else
y = pow( s, -b ) * hys2f1( c-a, b, c, -x/s, &err );
goto done;
}
d = c - a - b;
id = round(d); /* nearest integer to d */
if( x > 0.9 )
{
if( fabs(d-id) > EPS ) /* test for integer c-a-b */
{
/* Try the power series first */
y = hys2f1( a, b, c, x, &err );
if( err < ETHRESH )
goto done;
/* If power series fails, then apply AMS55 #15.3.6 */
q = hys2f1( a, b, 1.0-d, s, &err );
q *= gamma(d) /(gamma(c-a) * gamma(c-b));
r = pow(s,d) * hys2f1( c-a, c-b, d+1.0, s, &err1 );
r *= gamma(-d)/(gamma(a) * gamma(b));
y = q + r;
q = fabs(q); /* estimate cancellation error */
r = fabs(r);
if( q > r )
r = q;
err += err1 + (MACHEP*r)/y;
y *= gamma(c);
goto done;
}
else
{
/* Psi function expansion, AMS55 #15.3.10, #15.3.11, #15.3.12 */
if( id >= 0.0 )
{
e = d;
d1 = d;
d2 = 0.0;
aid = id;
}
else
{
e = -d;
d1 = 0.0;
d2 = d;
aid = -id;
}
ax = log(s);
/* sum for t = 0 */
y = psi(1.0) + psi(1.0+e) - psi(a+d1) - psi(b+d1) - ax;
y /= gamma(e+1.0);
p = (a+d1) * (b+d1) * s / gamma(e+2.0); /* Poch for t=1 */
t = 1.0;
do
{
r = psi(1.0+t) + psi(1.0+t+e) - psi(a+t+d1)
- psi(b+t+d1) - ax;
q = p * r;
y += q;
p *= s * (a+t+d1) / (t+1.0);
p *= (b+t+d1) / (t+1.0+e);
t += 1.0;
}
while( fabs(q/y) > EPS );
if( id == 0.0 )
{
y *= gamma(c)/(gamma(a)*gamma(b));
goto psidon;
}
y1 = 1.0;
if( aid == 1 )
goto nosum;
t = 0.0;
p = 1.0;
for( i=1; i<aid; i++ )
{
r = 1.0-e+t;
p *= s * (a+t+d2) * (b+t+d2) / r;
t += 1.0;
p /= t;
y1 += p;
}
nosum:
p = gamma(c);
y1 *= gamma(e) * p / (gamma(a+d1) * gamma(b+d1));
y *= p / (gamma(a+d2) * gamma(b+d2));
if( (aid & 1) != 0 )
y = -y;
q = pow( s, id ); /* s to the id power */
if( id > 0.0 )
y *= q;
else
y1 *= q;
y += y1;
psidon:
goto done;
}
}
/* Use defining power series if no special cases */
y = hys2f1( a, b, c, x, &err );
done:
*loss = err;
return(y);
}
/* Defining power series expansion of Gauss hypergeometric function */
static double hys2f1( a, b, c, x, loss )
double a, b, c, x;
double *loss; /* estimates loss of significance */
{
double f, g, h, k, m, s, u, umax;
int i;
i = 0;
umax = 0.0;
f = a;
g = b;
h = c;
s = 1.0;
u = 1.0;
k = 0.0;
do
{
if( fabs(h) < EPS )
{
*loss = 1.0;
return( MAXNUM );
}
m = k + 1.0;
u = u * ((f+k) * (g+k) * x / ((h+k) * m));
s += u;
k = fabs(u); /* remember largest term summed */
if( k > umax )
umax = k;
k = m;
if( ++i > 10000 ) /* should never happen */
{
*loss = 1.0;
return(s);
}
}
while( fabs(u/s) > MACHEP );
/* return estimated relative error */
*loss = (MACHEP*umax)/fabs(s) + (MACHEP*i);
return(s);
}
|